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THE NIMBUS 7 USERS' GUIDE

FOREWORD

This document provides users with background information on the Nimbus 7 spacecraft and
instruments to help them understand, and obtain Nimbus 7 data.

The basic spacecraft system operation, mission, and scientific objectives of the Nimbus 7 flight
are outlined, followed by a detailed discussion of each of the instruments. The formats, archiving,
and access to the data are described in detail since data handling responsibilities denote a major de-
parture from previous data processing methods. Additionally, each section contains a brief descrip-
tion-of archived tapes and examples of image displays. The National Space Science Data Center and
the National Oceanic and Atmospheric Administration will archive these products and issue catalogs •
containing information on Nimbus 7 data.

The principal authors for each section were selected by each Nimbus Experiment Team. All
team members are listed in Appendix B of this document. The assembly and editing oi_ this publi-

cation was accomplished by the Management and Technical Services Company (MATSCO), under
contract No. NAS 5-23740 with the Goddard Space Flight Center, NASA, Greenbelt, Maryland.

?
onald . Browning o

Project Manager
Landsat/Nimbus Project
Goddard Space Flight Center
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SECTION 1

THE NIMBUS 7 SPACECRAFT SYSTEM

by

Staff Members, Landsat/Nimbus Project

National Aeronautics and Space Administration

Goddard Space Flight Center

The purpose of this section is to present the Nimbus mission objectives, the scientific ob-

jectives of the Nimbus 7 experiments, outline the component subsystems and experiments of the

spacecraft, and present information on data products and their availability.

1.1 Introduction

The Nimbus 7 spacecraft will be launched from the Western Test Range at Vandenberg Air

Force Base, California, by a thrust-augmented Delta vehicle. The satellite will be placed in an 955

kilometer, sun-synchronous polar orbit, having local noon (ascending) and midnight (descending)

equator crossings, with 26.1 degrees of longitude separation. The orbital period will be about
104.16 minutes.

In orbit, with its solar panels unfolded, the Nimbus 7 appears as shown in Figure 1.1. The

earth-viewing sensors are mounted below the toms structure. The attitude control system and the

solar array are supported above the torus by a truss.

1.2 Nimbus 7 Mission Objectives

The Nimbus 7 mission affords the opportunity to conduct a variety of experiments in the pol-

lution, oceanographic and meteorological disciplines. It provides an opportunity to assess each

instrument's operation in the space environment and to collect a sizable body of data with the glo-
bal and seasonal coverage needed for support of each experiment. This mission also extends and

refines the sounding and atmospheric structure measurement capabilities demonstrated by experi-

ments on previous Nimbus observatories. The mission objectives of the Nimbus 7 are:

To observe gases and particulates in the atmosphere for the purpose of determining the

feasibility to map sources, sinks, and dispersion mechanisms of atmospheric pollutants

(SBUV/TOMS- SAM II - SAMS-LIMS)

• To observe ocean color, temperature, and ice conditions, particularly in coastal zones, with

sufficient spatial and spectral resolution to determine the feasibility of application such as:

(a) detecting pollutants in the upper level of the oceans,

(b) determining the nature of materials suspended in the water,
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(c) applying the observations to the mapping of sediments, biologically productive areas,

and interactions between coastal effluents and open ocean waters (CZCS),

(d) demonstrating improvement in ship route forecasting (SMMR).

To make quantitative measurements of air-surface boundary conditions (e.g., soil moisture,

snow and ice cover, sea surface temperature and roughness, and albedo) or of precipitation,

and to improve long-range weather forecasting in support of the Global Atmospheric Re-

search Program (SMMR-ERB)
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To continue to make baseline measurements of variations of long wave radiation fluxes

outside the atmosphere and of atmospheric constituents for the purpose of determining

the effect of these variations on the earth's climate (ERB-SBUV/TOMS - LIMS).

1.3 Spacecraft Components

The Nimbus 7 spacecraft components, consisting of the integrated subsystems that provide the

power, attitude control, and information flow required to support the payload for a period of one

year in orbit, are contained within the three major structures of the spacecraft. These three struc-

tures consist of: a hollow torus-shaped sensor mount, the solar paddles, and a control housing unit

that is connected to the sensor mount by a tripod truss structure.

The spacecraft weighs 965 kilograms and has a configuration similar to an ocean buoy. It is

3.04 meters tall, 1.52 meters in diameter at the base, and 3.96 meters wide with the solar paddles

fully extended. The sensor mount that forms the satellite base houses the electronics equipment

and battery modules. The lower surface ofthetorus provides mounting space for sensors and an-

tennas. A box-beam structure mounted within the center of the torus provides support for the

larger sensor experiments. The control housing unit is located on top of the spacecraft and above
this unit are the sun sensors, horizon scanners, and a command antenna.

1.3.1 Experiments

Seven experiments and one subsystem (THIR) are on board the Nimbus 7 spacecraft. These
experiments and a brief description of their scientific objectives are as follows:

Coastal Zone Color Scanner (CZCS). The objective of the CZCS is to map chlorophyll

concentration, sediment distribution, gelbstroffe concentrations as a salinity indicator, and

temperature of coastal waters and the open ocean.

Earth Radiation Budget (ERB). An instrument very similar to the ERB of Nimbus 6, is to

determine over a period of one year the radiation budget of the earth on both synoptic and

planetary scales by simultaneous measurement of incoming solar radiation and outgoing

earth reflected (shortwave) and emitted (longwave) radiation. Both fixed wide angle sam-

piing of terrestrial fluxes at the satellite altitude, and scanned.narrow-angle sampling of the
radiance components, dependent on angle are used to determine outgoing radiation.

Limb Infrared Monitor of the Stratosphere (LIMS). The objective of LIMS is to obtain

vertical profiles and maps of temperature and the concentration of ozone, water vapor,

nitrogen dioxide, and nitric acid for the region of the stratosphere bounded by the upper
troposphere and the lower mesosphere.

Stratospheric Aerosol Measurement II (SAM II). The SAM II objective is to map the con-

centration and optical properties of stratospheric aerosols as a function of altitude, latitude,
and longitude. When no clouds are present in the instrument's instantaneous field of view

(IFOV), the tropospheric aerosols can also be mapped.

• Stratospheric and Mesospheric Sounder (SAMS). The SAM, S objective is to observe the

limb of the atmosphere through various pressure modulator radiometers in order to measure
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verticalconcentrationsof H20, CH4, CO,andNO;observeresonantscatteringof solarrad-
iation in spectralbandsH20, CO2, COand NO;measurethe temperatureof the strato-
sphereandmesosphereto _90 kilometersaltitude;investigatesourcefunctionanddeparture
from thethermodynamicequilibriumbetween80 and130kilometersassociatedwith CO2
emissionbands,andmeasurethezonalwindvelocitycomponentalongtheline of sight.

Solar Backscatter Ultraviolet/Total Ozone Mapping (SBUV/TOMS). The SBUV/TOMS ob-

jectives are to determine the vertical distribution of ozone, map the total ozone and 200-

mb height fields, and monitor the incident solar ultraviolet irradiance and ultraviolet
radiation backscattered from the earth.

Scanning Multichannel Microwave Radiometer (SMMR). The primary purpose of the

SMMR is to obtain and use ocean momentum and energy-transfer parameters on a nearly

all-weather operational basis. Derived low altitude parameters are winds, water vapor,
liquid water content, and mean cloud droplet size.

Temperature Humidity Infrared Radiometer (THIR). The primary objective of the THIR

is to measure the infrared radiation from the earth in two spectral bands during both day

and night portions of the orbit; to provide pictures of the cloud cover, three-dimensional

mappings of cloud cover, temperature mappings of clouds, land, and ocean surface, cirrus

cloud content, atmospheric contamination and relative humidity.

1.3.2 Attitude Control Subsystem

The attitude control subsystem (ACS) provides stabilization about the spacecraft's roll, pitch,

and yaw axis and control of the solar paddles orientation, maintaining them nearly perpendicular to
the nominal sunline.

The ACS consists of four attitude control loops and associated switching logic, telemetry and

test modes, electrical manifolding, and thermal environmental control. This system maintains space-
craft alignment with the local orbital reference axes to within 0.7 degree of the pitch axis and one

degree of the roll and yaw axis. The system keeps the instantaneous angular rate changes about any

axis to less than 0.01 degree per second.

The three-axis active ACS uses horizon scanners for roll and pitch attitude error sensing. The

rate gyros sense yaw rate and, in a gyro compassing mode, sense yaw attitude. A torquing system
uses a combination of reaction jets to provide spacecraft momentum control and large control tor-

ques when required; flywheels are utilized for fine control and residual momentum storage.

1.3.3 Instrument Power

The spacecraft power subsystem consists of solar arrays, nickel-cadmium batteries, charge and

discharge regulators, and voltage regulators to operate all spacecraft support subsystems and to pro-
vide maximum power for the instrument payload.

It is anticipated that the orbit average regulated power provided by the observatory power sub-
system will be approximately 300 watts, of which 123 watts are allocated to the spacecraft

subsystems. If all the instruments were on full-time, the power requirements would exceed the

available supply. Because of this power limitation, the subsystems will operate for approximately
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thepercentageof time given in Table 1-1. Only THIR is scheduled to operate on a full-time basis.

This schedule is in accordance with the specific objectives of the Nimbus Project.

Table 1-1

Instrument Power Requirements for the Percentage of Operational
Time Allotted Each Sensor

Instrument Power Requirements (Watts) Operational Mode (%)

CZCS

ERB

LIMS

SAM II

SAMS

SBUV/TOMS
SMMR

THIR

11.4
36.3

24.5

0.8

23.0

20.0

61.6
8.5

30
8O

8O

8

8O

8O

5O

100

Subsystem Total =

Basic Spacecraft =

Observatory Total =

186.1

123.6

309.7

1.3.4 Communications and Data Handling Subsystem

The communications and data handling subsystem (CDHS) is composed of the S-band commu-

nications system and tape recorder subsystem and handles all spacecraft information flow. The

S-band communication system includes the S-band command and telemetry system, the data pro-

cessing system (DPS) and the command clock. The S-band command and telemetry system consists

of two S-band transponders, a command and data interface unit (CDIU), four earth view antennas,
a sky view antenna, and two S-band transmitters (2211 MHz). Commands are transmitted to the

observatory by pulse code modulation (PCM), phase-shift keying (PSK)/frequency modulation
(FM)/phase modulation (PM) of the assigned 2093.5 MHz S-band uplink carrier. Stored command

capability provides for command execution at predetermined times. Figure 1-2, a diagram of the
spacecraft data handling system, shows the routing of the sensor data to the versatile information

processor (VIP), the digital information processor (DIP), and the Coastal Zone Color Scanner

(CZCS) information processor (ZIP).

1.3.4.1 Telemetry and Ranging

Command, telemetry, and ranging signals are handled by a unified S-band (USB) transponder.
Stored data are played back to the ground station using the S-band links (see Figure 1-2). Specifi-

cally, the telemetry system includes two transponders which are interlocked to prevent simultaneous

transmission and also two wideband transmitters that are interlocked to prevent dual transmissions.

Single or dual downlink transmissions may be commanded at the transponder downlink frequency of
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2273.5 MHz or the wideband transmitter downlink frequency of 2211.0 MHz. Additionally, any

combination of signals may be used to modulate one transponder and one wideband transmitter. One

combination is an 800 kbs bi-phase PCM playback from any of the three on board tape recorders.

When using this combination the playback data may be either recorded digital information processor "
data, or Coastal Zone Color Scanner sensor data. Another combination is an 800 kbs bi-phase PCM

of real-time CZCS sensor data.

The transponder modulation is baseband PCM/PM multiplexed with the VIP telemetry sub-
carrier. The wideband transmitter modulation is PCM/FM. The transponder can be phase modulated

by ranging tones, by 800 kbs bi-phase PCM data or by 25 kbs bi-phase PCM real-time DIP data on a

mutually exclusive basis, selected by command. Simultaneous commanding, range tracking, and VIP

telemetry transmission are possible with the selected baseband modulation signal.

1.3.4.2 Data Processing System (on board)

The data processing system on board the Nimbus 7 spacecraft processes analog and digital data

in addition to the processing of housekeeping and sensor data. The low-rate housekeeping and sen-
sor data (up to 400 bps) is processed, formatted, multiplexed with medium rate sensor data (2 to 12

kbs), and stored for a full orbit on a multispeed (Goddard Standard) tape recorder at 25 kbs. The

high data rate ocean color sensor data (800 kbs) are processed and stored for a portion of the orbit.

Input and output cross strapping provides alternate signal routing in the event a failure occurs

with a tape recorder or transmitter. (See Figure 1-2).

The VIP subsystem monitors the observatory housekeeping data and low data rate sensor data

using three types of input gates; 576 analog, 320 digital B, and 16 are digital A. It digitizes the ana-

log data and formats the data into a 6400-word major frame (each word contains 10 bits). It outputs

these data at 4000 bps, which can be transmitted to the ground in real time or stored on an observa-

tory tape recorder for later playback to the ground. The format consists of an 80-by-80 matrix

(major frame) that repeats every 16 seconds. Each row of the matrix contains 80, 10-bit words and

is called a minor frame. The VIP output pulses are coherent with the beginning of each major frame

and are available to sensors for synchronization to the VIP sampling sequence.

The DIP and ZIP are part of the data processor subsystem (DAPS), which is the primary communi-

cation system for observatory data. The flight data-handling equipment (FDHE) is the spacecraft

components part of the DAPS. The FDHE also includes the THIR A/D converters, the spacecraft

tape recorders, and the input and output routers (IR & OR) for cross-patching major elements. The
DIP is a four-channel time-division multiplexer, wl_.'ch accepts synchronous, serial digital data from

predetermined sources and combines them into a synchronous, serial output bit stream at a 25 kbs
rate. The common denominator used for Nimbus 7 is 2 kbs, therefore, all inputs to the DIP must be

an exact multiple of 2 kbs. The resulting 25 kbs output is decommutated on the ground, where each
digital input is extracted from the composite and is available in its original format.

The ZIP is a special-purpose processor for handling CZCS sensor data. Specifically, the ZIP

multiplexes the six channels of CZCS digital radiometric data, removes nonsensible data, gates in cal-
ibration and synchronization data, and compresses the resulting output to a ratecompatible with the

spacecraft tape recorders and S-band transmission systems.



1.3.4.3 Fape Recorder Subsystem

The Nimbus 7 observatory carries three identical tape recorders, one classified as a redundant

unit. Each recorder is capable of recording either DIP or ZIP data, but not both simultaneously. In a

normal recording operation, one recorder records 25 kbs data from the DIP for periods of 100 to 257

minutes and then reproduces it in reverse direction at a rate of 800 kbs. Normally, one recorder will
be used for recording DIP data and another is used for recording ZIP data. Each recorder has a total

record capacity of 305 minutes of DIP data recorded at 25 kbs or 9.56 minutes of ZIP data at 800 kbs.

Data are played back at a rate of 800 kbs for either the DIP or ZIP with a lapse rate of 9.56

minutes for a full tape. Less time is required if less than a full tape has been recorded. A fast rewind

mode (three minutes) allows 500 feet of active tape to be moved from beginning of tape (BOT) to end

of tape (EOT) at a high speed rate. This is accomplished without record, playback or erasure of pre-

viously recorded data. In normal operation, one recorder is played back to a receiving station while

the other is recording; thus avoiding loss of data. A summary of operating modes is presented in
Table 1-2.

Table 1-2

Tape Recorder Modes Summary

Mode

Record DIP

Record ZIP

Playback (DIP or ZIP)

Rewind

Data Rate (kbs)

25.0

800.0

8OO.O

Tape Speed

(in./sec)

0.327

10.45

10.45

35.0

Max. Continuous Oper.

Time (minute)

305

9.56

9.56

3.0

1.3.5 Thermal Control Subsystem

The thermal control subsystem is designed to provide a controlled environment of 25°C (plus or

minus 10°C) within the observatory to promote long life for subsystem and instrument components.

Thermal control is accomplished by both semipassive (shutter and heaters) and passive (radiators, in-
sulation, and coatings) elements. Shutters are located on most of the peripheral compartments on

the sensory ring, and are actuated by fluid-filled bellows assemblies. The assemblies are fastened to a

sensor plate which is in contact with the dissipating components that position the shutter blades to
the proper heat-rejection level. Heaters are bonded at various locations in the sensory ring to prevent

temperatures from falling below minimum levels during extended periods of low equipment duty

cycles. The heaters are energized selectively by ground command when the temperature level at these

locations fails below a pre-determined value. The upper and lower surfaces of the sensory ring are

insulated to prevent gain or loss of heat through those areas. External structure and radiating surfaces

are coated to provide the required values of emission and absorption. Passive radiators, coated with

a low-absorptivity, high-emissivity finish, are used to assist the shutters in rejecting heat from the

sensory ring.



1.4 DataHandlingandProcessing Complex

The Nimbus Project at GSFC has the responsibility for the initial processing of the observations

from all eight instruments on board the Nimbus 7 spacecraft. Data processing for several sensors con-

tinues at GSFC. These are processed into archieved tape and film products. Data from some sensors
is sent to intermediate processing facilities outside of the GSFC complex. The centers return data to

GSFC for final processing and archival.

This procedure is a departure from the traditional method of having the processing of data from

each experiment the responsibility of each principal investigator. For the Nimbus Project to meet

this new responsibility, a data handling and processing complex was established at the Goddard Space
Flight Center and designated the Nimbus Observation Processing System (NOPS). The purpose of

NOPS (Figure 1-3) is to organize and oversee the processing of payload data (except SAMS) into sci-

entific investigations. For a graphic view of the relationship between the Nimbus Observation Pro-

cessing System and the Nimbus Data Applications System (NDAS) see Figure 1--4.

Since data handling and processing are a major task not easily handled in a single facility at

GSFC, a plan was devised to distribute the processing among several facilities while converting the

computational results into the data products in one facility (GSFC). This plan affords the oppor-

tunity to have a broader range of display equipment available for all instrument data products than if

the computational and display efforts were both distributed. The specific responsibilities of the
NOPS are:

• to calibrate, qualit.y check, and geographically locate the raw sensor observations,

• to convert the observations into meaningful parameters through the application of scientific
algorithms,

• to establish a broad data base by correlating observations from related sensors,

• to display the derived parameters in the most useful forms (products) for scientific investi-

gations and correlations,

• to distribute the generated products to Nimbus Experiment Teams (NET) and selected in-
vestigators on a limited basis, and

• to distribute archival quality tapes and film products to archive centers for their dissemi-
nation to all interested users.

The Information Processing Division (IPD) at GSFC is utilized as the central data products
generation and distribution facility. IPD generates contoured maps, cross sections, atmospheric pro-

files, plots, listings, montages, and images on 16 mm microfilm, 35 mm color slides, 105 mm color

f'tim, and 241 mm black and white film. They also generate and distribute a wide variety of magnetic

tapes.

The Earth Radiation Budget (ERB), Scanning Multichannel Microwave Radiometer (SMMR),

and Solar Backscatter Ultraviolet/Total Ozone Mapping System (SBUV/TOMS) data, receives initial

processing in the Science and Applications Computer Center (SACC) at GSFC. ERB processing in

SACC is a two part operation; the second step delayed until information derived from the first step is

obtained from the National Oceanic and Atmospheric Administration (NOAA). The Temperature
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Figure 1-4. Relationship Between the Nimbus Observation Processing System (NOPS)
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Humidity Infrared Radiometer (THIR) and Coastal Zone Color Scanner (CZCS) data, receives initial

processing by IPD at GSFC, incorporating the straight-forward calibration science processing require-
ments within the image generation requirements.

The cloud content in the instantaneous field of view (IFOV) of ERB and SBUV/TOMS are com-
puted from the THIR data and utilized in the respective processing for these instruments. THIR

cloud content in the SMMR IFOV's is listed as corroborative information for SMMR data product

evaluation. Stratospheric and Mesospheric Sounder (SAMS) data is processed at Oxford, England.

SAMS data is sent by data phone lines from GSFC to Oxford. The Limb Infrared Monitoring of the

Stratosphere (LIMS) experiment data is processed at the National Center for Atmospheric Research

(NCAR) facilities, and the Stratospheric Aerosol Measurement II (SAM II), experiment data is pro-
cessed at Langley Research Center (LaRC), Virginia.

A common image location program based on the Nimbus 6 ERB program for deriving spacecraft

attitude is included in the Meteorological Operations Control Center (MetOCC) processing with the

results utilized in the processing for all the instruments. The image location tapes are sent with the

user formatted output (UFO) tapes or the sensor data tapes (SDT) to the appropriate facility. See

Sections 2 through 9 for details on the processing plans for the individual instruments. These pro-
cessing plans are based on the currently available algorithms as provided by the sensor scientists.

All initial photographic processing and reproduction services are provided by IPD. IPD provides
for the distribution of the data products to the NET members and archival centers. The film and

tape archival plan is presented in Section 1.5.

For a composite view of the Nimbus 7 data flow, refer to Figure 1-5 and 1-5a.

1.4.1 Nimbus Data Application System

The function of the Nimbus Data Applications System (NDAS) is to set the requirements for

Nimbus 7 data products and the processing algorithms. NDAS evaluates submitted proposals for in-

vestigations, disseminates data, administers and monitors contracts related to scientific investigations,
and coordinates results with investigators and users. See Figure 1-4.

1.4.2 Nimbus Experiment Teams

There are seven Nimbus Experiment Teams (NET's), one for each of the NASA-provided

sensors, plus the United Kingdom team for the Stratospheric and Mesospheric Sounder (SAMS)

experiment. The NET's have met at frequent intervals from the initial inception of each
committee and will meet through at least one year after launch. Each team consists of five to ten

members and is supported by applications scientists and data processing support personnel. Addi-

tionaUy, each NET is also supported by the Nimbus 7 Data Applications System Manager or his
appointed representative.

The function of the NET members is to assist and provide advice on all aspects of their respective

sensor program and to perform studies or tasks in their areas of expertise during pre-launch and post-
launch activities. They determine the principal research and development requirements of each ex-
periment and perform the required tasks commensurate with priorities and available resources.

A complete list of the Nimbus Experiment Team members is given in Appendix B. A summary
of the tasks and study areas for each NET are:
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• to develop, use and test processing and science algorithms,

• to define the general content of the film and tape product,

• to verify sensor calibration and performance,

• to participate in the planning for data acquisition, time schedule sharing of sensor opera-

tions,

• to certify the quality of data output products by comparison measurements with other data
(ground truth measurements), and

• to perform initial post-launch experiment investigations and issuing appropriate reports and
publications.

1.5 Data Archiving

The Nimbus 7 archival data products distribution is accomplished after the individual Nimbus

Experiment Teams have validated the data. This validation process is expected to take from two to
six months after launch, depending on the experiment and the type of anomalies that may arise dur-

ing the initial checkout phase.

Listed in Table 1-3 are the film data products available to all users. Table 1--4 provides the

same information for tape data products. All products, except for CZCS, are archived by the Na-

tional Space Science Data Center (NSSDC). CZCS data are archived by the Environmental Data

Information Service (EDIS). The addresses of these agencies are:

Environmental Data Information Service

World Weather Building
Room 606

Camp Springs, Maryland 20733

National Space Science Data Center

Goddard Space Flight Center
Code 601

Greenbelt, Maryland 20771

In addition to the film and tape data products, EDIS will publish a CZCS catalog listing all avail-

able CZCS data. NSSDC will publish a meteorological catalog listing data from all meteorological
satellites including tape and film output products from Nimbus 7. To obtain copies of these catalogs,
write to NSSDC or EDIS.

All requests from foreign researchers for Nimbus 7 data archived and available through NSSDC

must be specifically addressed to:

Director, World Data Center A for Rockets and Satellites

Code 601, Goddard Space Flight Center

Greenbelt, Maryland 20771, U.S.A.
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Table 1-3

Film Data Products Available Through EDIS and NSSDC.

Archival
Data Center

EDIS

Sensor

CZCS

Reproducible Copy Is:

2nd generation 241 mm (9.5")
black and white negative

transparency.

User Copy Will Be:

a. 241 mm black and

white positive or
negative transparency.

b. 241 mm black and

white positive print.

NSSDC ERB, SAM II_
LIMS, SBUV/
TOMS, SAMS

TOMS

(montage)

.SMRR
(all data)

THIR
(montage)

2nd generation 16 mm negative
(black background) transpar-

ency.

2nd generation 241 mm black
and white negative transpar-

ency.

2nd generation 35 mm color
positive transparency.

2nd generation 241 mm black
and white negative transpar-

ency.

a. 16 mm positive trans-

parency.
b. 241 mm hard copy (in

limited quantity).

a. 241 mm black and

white positive or neg-
ative transparency.

b. 241 mm black and

white positive print.

a.

b.
35 mm color slide.

color prints - maxi-
mum size 203 mm x

254 mm (8" x 10").

a. 241 mm black and

white positive or neg-
ative transparency.

When ordering data from either the NSSDC or the World Data Center, a user should specify why

the data are needed, the subject of his work, the name of the organization with which he is connected,

and any government contracts he may have for performing his study. Of course, each request should

specify the experiment data desired, the day and area of interest, plus any other information that
would facilitate the handling of the data request. Requests for specific tape types, as listed in Table

1-4, should specify the tape specification (last column in Table 1-4). This number references a tape

specification document describing the record and file content and word format of each tape type. A

user receives a tape specification document for each requested tape type.

A user requesting data on magnetic tapes should provide additional information concerning his

plans for using the data, e.g., what computers and operating systems will be used. In this context,
the NSSDC is compiling a library of routines which can unpack or transform the contents of many of

the data sets into formats which are appropriate for the user's computer. NSSDC will provide, upon

request, information concerning its services.

When requesting data on magnetic tape, the user must specify whether he will supply new tapes

prior to the processing, or return the original NSSDC tapes after the data have been copied.
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Table1-4
TapeTypesAvailableThroughEDISandNSSDC

Archival
DataCenter

EDIS

NSSDC

Sensor

CZCS

TapeName

CRCST
CAT

TapeQuantity
perYear

5500
12

PDFC

ZB
ZC

Tape Spec. No.

T749021
T749031

ERB

LIMS

SAMS

SAM II

SBUV/
TOMS

SMMR

THIR

MAT RIX
MAT
SEFDT
ZMT

MATRIX-M
MATRIX-C
PROFILE-R
PROFILE-I
RAT
IPAT
MAT
CAT
SMAT
SCAT

MATRIX
RAT

MATRIX
PROFILE
RDAT
BANAT

MATRIX
MONTAGE
RUT-S
OZONE-S
OZONE-T
ZMT
RUT-T

"MAP-30
MAP-LO
MAP-SS
PARM-30
PARM-LO
PARM-SS
TAT
CELL-ALL

CLDT
CLE
CLT

12
365

12
2

14
14

7
21

210
105

70
70

7
7

24
180

4
12
12
12

24
52
26
12

180
2

120

12
12
12
60
3O
30

183
61

730
53

104

AA
AC
AD
AE

EA
EB
EC
ED
EE
EF
EG
EH
EI

EM

HA
HC

DA
DB
DC
DD

FA
FC
FD
FE
FF
FH
FJ

BD
BE
BF
BG
BH
BI
BJ
BK

ID
IE
IF

T134031
T134081
T134021
T134091

T564041
T564081
T564111
T564071
T564011
T564021
T564051
T564091
T564101
T564121

T884011
T884041

T454021
T454011
T454041
T454051

T634071

T634081
T634111
T634041
T634091
T634061
T634121

T234051
T234101
T234111
T234041
T234121
T234131
T234021
T234071

T344011
T343031
T343041
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SECTION 2

THE COASTAL ZONE COLOR SCANNER (CZCS) EXPERIMENT

by

Dr. Warren Hovis

National Oceanic and Atmospheric Administration
National Environmental Satellite Service

Room 0135, FOB 4

Washington, D.C. 20233

2.1 Introduction

The Coastal Zone Color Scanner (CZCS) is the first instrument devoted to the measurement of

ocean color and flown on a spacecraft. Although instruments on other satellites have sensed ocean

color, their spectral bands, spatial resolution, and dynamic range were optimized for land or meteor-

ological use. In the CZCS, every parameter is optimized for use over water to the exclusion of any
other type of sensing. The signal-to-noise ratios in the spectral channels sensing reflected solar radi-
ance are higher than those required in the past. These ratios need to be high because the ocean is

such a poor reflecting surface that the majority of the signal seen by the reflected energy channels at

spacecraft altitudes is backscattered solar radiation from the atmsophere rather than reflected solar

energy from the ocean. The CZCS thermal channel utilizes the 10.5/am to 12.5/am region used on
many other thermal mappers. This CZCS channel is unique, however, since it is registered with the

reflected solar energy bands and has the same spatial resolution.

The data processing techniques for the CZCS are also unique in that off-setting is used to enhance

contrasts over the ocean and remove much of the effect of the backscattered atmosphere. Attempts
will be made to process the data into derived products such as pigment concentration and diffuse at-

tenuation coefficient prior to distribution to users. The archived magnetic tapes contain both cali-

brated radiances and equivalent blackbody temperatures, plus the derived products, so a user with a

large computer facility would be able to utilize a more complicated algorithm than that used in pro-

duction and processing at GSFC. A user without such a facility can utilize the derived products
provided by NASA.

The CZCS is a conventional multi-channel scanning radiometer utilizing a rotating plane mirror

at a 45 degree angle to the optic axis of a Cassegrain telescope. The rotating mirror scans 360 degrees,
however, only -+40 degrees of data centered on the spacecraft nadir is collected for ocean color mea-

surements. During the rest of the scan, the instrument acquires a view of deep space and of internal

instrument sources for calibration of the various channels. The radiation collected by the telescope is
divided into two portions by a dichroic beam splitter. One portion is transmitted to a field stop that

is also the entrance aperture of a small polychromator. The radiant energy entering the polychroma-

tor is disbursed and reimaged in five wavelengths on five silicon detectors in the focal plane of the
polychromator. The spectral channels are described in detail in Section 2.3. The portion of the

beam reflected off of the dichroic mirror is directed to a cooled mercury cadmium telluride detector
sensing in the 10.5/am to 12.5/am region. The CZCS utilizes a radiative cooler that cools the mer-

cury cadmium teUuride detector to approximately 120 Kelvin during spacecraft flight.

!
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The CZCS is intended primarily as a tool for determining the content of water. It is well known

that the content of water, be it organic or inorganic particulate matter or dissolved substances, affects

its color. Ocean water, containing very little particulate matter, scatters as a Rayleigh scatterer with

the well known deep purple or bluish color of the ocean. As particulate matter is added to the water,

the scattering characteristics are changed and the color is changed. Phytoplankton, for instance, have

specific absorption characteristics and normally change the water to a more greenish hue although
some phytoplankton, such as the various red tide, can change the water to colors such as red, yellow,

blue-green, or mahogany. By sensing the color with very high signal-to-noise ratios, the CZCS pro-

vides a mechanism for analyzing that color for the content of the water. Inorganic particulate matter

in water, such as the terrigenous outflow from rivers, has a different color from organic material.typi-
cally brownish in color but sometimes varying with red.

2.2 Scientific and Technical Objectives

2.2.1 Scientific Objectives

The scientific objective of the CZCS is to determine the specific nature of the contents of water

as quantitatively as possible and to carry out such measurements over large areas in short periods of

time in a way not possible with other techniques such as surface ship investigations. Specifically, the
CZCS experiment attempts to discriminate between organic and inorganic materials in the water, de-

termine the quantity of these materials in the water sample to the best degree possible and, in certain

instances, attempts identification of organic particulates such as discriminating between various types
of red tide organisms.

By conducting measurements over a large area in a short period of time, the CZCS allows ocean-

ographers to view the ocean as never seen before from ships. As an example, in one two-minute data

segment, the CZCS covers approximately 1.3 million square kilometers of the ocean surface allowing ex-
amination, nearly simultaneously, on a scale never before accomplished. Measurements on this scale al-

low oceanographers to determine such things as the standing stock of phytoplankton and its distribution

in various fishing areas and, potentially, to assess the ability of that area to support a standing stock
of fish. In addition to examining the existing fisheries, the CZCS will be used to look for new areas

of potential fish production around the globe.

2.2.2 Technical Objectives

The technical objective of the CZCS program is to determine if remote sensing of color can be

used to identify and quantify material suspended or dissolved in water. If ocean color measurements

can be used to derive such products as chlorophyll and sediment concentration, they will guide fur-
ther development of the ocean color discipline and help tb determine if such an instrument is a can-

didate for operational satellite use in the future.

The algorithms being developed for the derived products from CZCS are the result of the most

extensive ocean color measurements ever made and are a considerable step forward from those avail-
able in the past. Corrections for such things as atmospheric backscatter and limb brightening are in-

cluded in the CZCS processing algorithms. The processing goal is to take the observed radiance,

determine the radiance that would be seen directly above the ocean surface, and then derive from
that radiance, the content of the water below the ocean surface.
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2.3 InstrumentDescription

2.3.1 Operation

TheCZCShasconsiderableflexibility built into it to accommodateawiderangeof conditions.

The first four spectral bands, for instance, have four separate gains that change, on command, to

accommodate the range of sun angles observed during a complete orbit and throughout the various

seasons. The gains are changed to utilize the best dynamic range possible without saturating over

water targets. Normally, the gain used in the first four channels is determined by the solar elevation

angle of the target to be acquired. When a special circumstance is expected, such as a particularly

bright material in the water, the gain can be changed to accommodate the special circumstances.

In addition to gain change, the CZCS scan mirror can be tilted from nadir to look either forward

or behind the spacecraft line of flight. It can tilt in two degree increments up to twenty degrees in

either direction. This feature was built into the instrument to avoid the glint caused by capillary waves

on the ocean that would obscure any scattering from below the surface. The angle of tilt of the scan

mirror is determined by the solar elevation angle. It is normally tilted to avoid sunlight and would

only be commanded to look into the glint for a special sunglint study.

2.3.2 Viewing Geometry

The CZCS is a scanning multi-spectral radiometer with a recorded scan width of 1566 kilometers

centered on spacecraft nadir. The scanner actually scans through 360 degrees, but the electronics
limit the high data rate sampling to 39.34 degrees about nadir. As discussed in Section 2.3.1 the scan-

ner looks either ahead or behind the spacecraft nadir in increments of two degrees up to twenty deg-

rees to avoid ocean surface glint. The ground resolution of the IFOV is 0.825 kilometer at nadir and

degrades somewhat as the instrument scans away from nadir on either side. The viewing geometry of
the instrument is illustrated in Figure 2-1.

2.3.3 Channel Characteristics

The CZCS has six spectral bands, five sensing backscattered solar radiance and one sensing emit-

ted thermal radiance. Figure 2-2 illustrates the method by which discrimination of the spectral bands

is achieved. The beam is split by a dichroic beam splitter, one portion of the beam going through a

set of depolarizing wedges to a small polychromator where the radiance is dispersed and detected by

five silicon diode detectors in the focal plane of the polychromator. Radiance in the 10.5/am to 12.5

/am spectral band is reflected off the dichroic and then imaged onto an infrared detector of mercury

cadmium telluride cooled to approximately 120 Kelvin. Table 2-1 shows the center wavelengths, the

spectral bandwidths, and the minimum signal-to-noise ratio specified for the instrument at the most

sensitive gain setting, that is, the gain setting that would be used for the darkest targets. (Prelaunch

tests show the instrument has exceeded the specification for signal-to-noise in every channel). The

first four channels were selected to cover specific absorption bands and the so-called hinge point.
These channels are meant to look at water only and saturate when the field of view is over most land

surfaces and clouds. The spectral response of channels 1 through 5 is illustrated in Figure 2-3.

Channel 5 has the same spectral response as channel 6 of the Landsat multi-spectral scanner ser-

ies. The gain of channel 5 is fixed and set to produce the same percentage of maximum signal over
land targets as the Landsat channel 6. However, the actual radiance for saturation is higher since the

Nimbus 7 spacecraft crosses the equator at high noon whereas Landsat crosses the equator at 9:30 a.m.
local time.
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8 = 1.374 RADS (78.680)- -

o<= .865x10 -3 RADS (.04960 )

d = .825 Km

orbital altitude = 955 Km

D = 1566 Km

CZCS SCANNING ARRANGEMENT

1566 Km

ACTIVE SCAN ANGLE = 78.680

Figure 2-1. CZCS Viewing Geometry and Earth Scan Pattern

The 10.5/am to 12.5/am channel measures equivalent blackbody temperature as seen by the
sensor with a noise equivalent temperature difference of less than 0.35 Kelvin at 270 Kelvin. Atmo-

spheric interference with this channel, principally from weak water vapor absorption in the 10.5/am
to 12.5/am region, can produce measurement errors of several degrees. Temperature gradients, how-

ever, should be seen quite well because of the extremely low noise equivalent temperature difference
of this sensor.
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2.4 Calibration

2.4.1 Prelaunch Calibration

Prelaunch calibration of the CZCS was achieved utilizing a 76 centimeter diameter integrating

sphere as a source of diffuse radiance for channels 1 through 5 and a blackbody source for calibration
of channel 6. The integrating sphere was especially constructed for calibration of the CZCS and was,

itself, calibrated from a standard lamp from the National Bureau of Standards utilizing a spectrometer
and another integrating sphere to transfer calibration from the lamp to the sphere. This same type of

sphere has been used in calibrating the multi-spectral scanner for Landsat and will also be used to cal-

ibrate the Advanced Very High Resolution Radiometer (AVHRR) for the TIROS-N series that will

be flying at approximately the same time as Nimbus 7.

In addition to the sphere and the blackbody, a collimator was also used to calibrate the CZCS in

vacuum testing. Calibration was transferred from the primary calibration standard, the sphere and

the blackbody, to the collimator using the instrument itself.

2.4.2 In-flight Calibration

In-flight calibration of the CZCS is accomplished for the first five bands by using a built-in in-

candescent light source. This in-flight calibration source was calibrated using the instrument itself as

a transfer against the referenced sphere output. The fight source is redundant in the instrument so
that in case of failure of one of the lights, another one can be ordered to operate on command. After

launch, light calibration source number one will be used routinely, with light source number two test-

ed occasionally to verify its stability.

Channel 6 is calibrated by viewing the blackened housing of the instrument whose temperature

is monitored. Deep space is another calibration viewed during the 360 degrees rotation of the scan
mirror.

The output from both calibration sources will be monitored during the life of the sensor to de-

termine if any changes in sensitivity occur. If changes in sensitivity are observed, a procedure will be

followed to determine if the change is due to a change in sensitivity of the various detectors, chan-

nels, or a change in the calibration source itself.

2.5 Operational Modes

Since Nimbus 7 flys from south to north in daylight, the scan mirror is positioned to look be-
hind the satellite when the spacecraft is south of the subsolar point and ahead of the spacecraft when

it is north of the subsolar point. Tilt and gain setting information is transmitted with the CZCS data

and is part of the data product records.

The CZCS data is transmitted from the spacecraft to ground receiving stations at a rate of 800

kbs either in real time or in playback of the tape recorder. Whenever possible the data is recorded in

real time. However, when the satellite is out of the range of tracking stations, the data is recorded on

an on board tape recorder. The tape recorded data will normally be played back at the Alaska track-

ing station. Nine other STDN's also have the capability to receive these playbacks.
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To improvetheinstrumentresponseto oceancolor,aDCoffsetcanbeinsertedinto theonboard
processingof theradiancemeasuredin thefirst fourbands.In thisDCoffsetmode,theentiredigital
capabilityof theonboarddigitizerisutilizedto coverapproximatelythetop 30percentof the signal
whichcontainsmodulationdueto changein oceancolor. Sincetheknowledgeof the exactamount
of theoffseteliminatedin theonboardprocessingisalwaysknown,it canbereinsertedwhereneed-
edfor processingon theground.

The sensoris turnedon in sufficienttime prior to collectionof datato allow for instrument
warm-upandfor thesensorto stabilize.Sinceallchannelsarecalibratedcontinuouslyduringflight,
anyeffectof turn-on transientshouldbenoticedimmediately,but noneisexpected.

Themostimportantaspectto beunderstoodabouttheCZCSoperationis that theoperationis
limited due to spacecraft power constraints to approximately two hours per day. Because of the re-

quirement to operate the sensor two hours per day, data must be taken in carefully preselected loca-

tions. Minimum on-off data taking time is a two minute segment. Frequently, longer segments are
taken - up to a maximum of ten minutes of continuous data.

Interested users are reminded that if they wish to acquire CZCS data over a particular site, they
should contact a member of the Experiment Team and inform that member of the location of the site

and the dates on which coverage is most highly desired. Even though all of the data is placed in the

public archive, there is no guarantee that all areas of the world will be covered. A special effort will

be made, however, to cover major oceanographic expeditions where surface truth is being collected
by a ship.

The prime operational area for the CZCS are the coastlines of the United States and the Gulf of

Mexico. Other areas of coverage are the coast of Europe, including the Mediterranean Sea, the Baltic
Sea, the North Sea, the channels between England and the mainland, the Irish Sea, and the test sites
designated by the EURASEP Group of the Commission of European Communities. South African

NET participation has requested coverage around the southern tip of Africa on both the east and west

coasts, and extending toward the Antarctic. In the Antarctic summer following the launch of Nim-

bus 7, the Scientific Committee on Antarctic Research (SCAR) will conduct a large expedition in

Antarctic water. This will also be a prime target area for the CZCS. Other areas, such as the Deep

Ocean Mining Experiment Stations (DOMES), and the Antarctic coverage are limited by the extent

of the activities such as the time of the DOMES' action, or the availability of sunlight as in the Ant-
arctic where the sensor can only operate usefully during the Antarctic summer. Requests for cover-

age of other areas have been received from a number of institutions around the world, and every
attempt will be made to accommodate request.i from other oceanographic institutions, especially
when surface truth is being measured by institutions.

All channels of the CZCS instrument operate simultaneously. During daytime operations all

six channels provide useful information. If the sensor operates at night, only data from channel 6 is
usable.

2.6 Data Processing, Formats, and Availability

2.6.1 Data Processing

The data from the CZCS is transmitted to the ground either in real time, or from tape recorder

playback, at a rate of 800 kbs. The data is recorded on magnetic tapes and sent to the IPD at GSFC.
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Thesetapescontainboth radiometricinformationfrom theimageryandCZCShousekeepinginfor-
mation. IPDusesthesedata,plusimagelocationtape(ILT) data,to producethe usertapesdescribed
in Section2.6.2andthe imagesdescribedin Section2.6.3. After makingsufficient tapeandfilm
copiesfor NETusers,IPDforwardsthetapesandfilm to the EnvironmentalDataInformationService
(EDIS)of NOAAfor archivingandreproduct!onof copies.

At IPDthedataareconvertedfromvoltagesto radiancesfor bands1through5, andto equiva-
lentblackbodytemperaturefor band6. This isaccomplishedby usingthecalibrationcurvesderived
beforelaunchandapplyingin-flight calibrationsources.After calibration,the datais processed
usingalgorithmsdevelopedby theCZCSNETto deriveproductsof suspendedanddissolvedma-
terial in thewater. Asknowledgeisgainedfrom theexperiment,the algorithmsmayneedto be
changed.All algorithmsareavailableto users,andthoseusedto processeachtapeandimageare
identifiedon thoseproducts.

2.6.2 TapeProducts

Thefollowingtapeproductsareproducedby IPDandaresentto the EDISat NOAAfor archiv-
ing. Briefdescriptionsof thesetapesareasfollows:

• CRCST(CalibratedRadiance,Pigment,DiffuseAttenuationCoefficientandTemperature
Tape)

ThesetapescontaincalibratedandlocatedCZCSdatafrom all six channelsscan-line-by-
scan linewith thechannelsseparated,plusderivedpigmentanddiffuseattenuationco-
efficientparameters,wherecomputed.Thereisamaximumof threetwo-minuteblock
(files)of datapertape. Statisticalandcalibrationsummariesareat theendof eachfile.

• CAT(CatalogTape)

Thesetapescontaincatalogedinformationonall images(two-minutefileson theCRCST's).
Entriesareorganizedchronologicallyby targetarea(location).

Theform andcontentof eachof thesetapesaredescribedin atapespecificationdocumentfor
eachtapetype. Theappropriatedocumentwill accompanyatapeshipmentto a user.

Asdiscussedin Section2.5,theCZCSisexpectedto operateamaximumof two hoursperday.
If thesensorsoperatefor two hoursperdayfor oneyearapproximately22,000imagesand7,000
magnetictapeswouldbegenerated.Becauseof weatherconditions,principallycloudcover,theCZCS
probablywill not operateits scheduledtwo hourperiodtierdayasplanned.Thus,amorereasonable
estimateof total outputperyearisapproximately12,000imagesand4,000magnetictapes.'

2.6.3 Film Format

Figure2-4 isan example of the format for all CZCS images. Each display is produced on 241

mm by 241 mm (9.5 inch) black and white image stock. The title and reference information at the

top of each display includes the gain and tilt angle in effect during the scene, and whether the thresh-
old mode of data enhancement was on or off.

Each of the ten chips on a single display has the same latitude and longitude grid around the

chip boundaries. Channel displays 1 through 6 show radiances as shades of gray (referenced to the
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Figure 2-4. CZCS Image Display Format

gray scale at the bottom of the display). The physical parameters of pigment concentration and dif-

fuse attenuation coefficient, if calculated for the scene, are shown as shades of gray (two chips) and

as contoured plots (two chips). The top displays (channels 5 and 6) represent the maximum amount

of data from a single channel: -+39.36 degrees from nadir for each scan line, and two minutes of data

along the orbit track. The bottom eight displays (channels 1 through 4 on the left, plus the four

scenes of pigment and diffuse attenuation coefficient parameters) show only the region of best spatial

resolution and least geometric distortion, which is within +20 degrees of nadir. Each scene (chip) is

rectified along each scan line and from scan line to scan line so there is an approximately equal scale
over each scene•
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The crosses at the four comers of each of the lower eight chips, and along the top and bottom

of the top two chips, are for reference if two or more channels are to be photographically color com-

posited. Cutting apart the chips and aligning two or more sets of crosses provides chip-to-chip regis-
tration.

The 16-step gray scale beneath the chips is calibrated in radiances for reference to the images.

The values for the gray scale versus radiances for each display are provided in the EDIS catalogs. The

appropriate table for each display is identified beneath each gray scale.

The ten algorithms used to generate the ten chips are identified in the lower left corner. The last

line in the lower left lists the number of scan lines processed (maximum is 960) and used as input for

the chips, and the number of these scan lines containing errors.

The reference data in the lower right corner are the film specification number (F742040) the

projection data format code (ZQ), and the film frame number (XXXXXX).

2.6.4 Data Availability

All of the CZCS data is archived with the Satellite Data Services Branch of the Environmental

Data Information Service of NOAA. The address is as follows: World Weather Building, Room 606,

Camp Springs, Maryland 20233. A catalog is planned that will show the orbital track of the Nimbus

7 spacecraft on a day-by-day basis with the areas where CZCS was operated indicated on the orbital
tracks. In addition, there will be a short description on the imagery giving such parameters as cloud

cover for each image. The catalogs will be sent to an initial mailing list and will then be available

through the Environmental Data Information Service, Satellite Data Services Branch.

The cost of the CZCS data product has not been established, but it is estimated at approximately

$3.50 for a photographic transparency and $60.00 for the magnetic tape. All data is available to any

user who wishes to purchase it. Data will normally be ordered from the CZCS catalog by specifying
the orbit and GMT of the data desired. For users without a CZCS catalog, see Section 1.5 of this

document for general tape and film ordering information. The first validated data sets should be
available to users between three and six months after launch.

2.7 Planned NET Experiment Investigations and Data Applications

The Nimbus Experiment Team for the Coastal Zone Color Scanner (CZCS) presently plans two

major expeditions after launch of Nimbus 7 for validation of the derived product of the CZCS. One

expedition will be carried out of the Gulf of Mexico utilizing the research vessel GYRE from Texas

A&M University. This expedition will be carried out from approximately mid-October to the first
week of November 1978, and will cover various water mass types in the Gulf of Mexico.

The other NET surface validation expedition will be carried out off of Southern California and

in the Gulf of California utilizing a research vessel from the Scripps Institute of Oceanography. This

expedition will occur sometime after the first year in 1979.

Foreign experiment team members will carry out validation investigations in European waters and

off South Africa. The Joint Research Center of the Commission of European Communities will co-

ordinate the activities of the EURASEP group in carrying out surface truth validations in waters around
Europe. Information on their planned activity can be obtained from Dr. Bruno Sturm of the Joint Re-
search Center, Ispra, Italy.
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TheSouthAfricanexperimentteammember,Dr. FrankAnderson,Directorof theNationalRe°
searchInstitute for Oceanology,will coordinateSouthAfrica'seffortsin validationmeasurements
madein conjunctionwith Nimbus7 overpasses.Theirplanshavenotbeenfinalizedandanyfurther
informationconcerningtheSouthAfricanvalidationeffortsshouldbeobtainedthroughDr. Anderson.
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SECTION 3

THE EARTH RADIATION BUDGET (ERB) EXPERIMENT*

by

H. Jacobowitz and L. L. Stowe
National Environmental Satellite Service

National Oceanic and Atmospheric Administration
Washington, D.C.

and

J. R. Hickey
The Eppley Laboratory
Newport, Rhode Island

3. t Scientific Objective

The objective of the Earth Radiation Budget (ERB) experiment, a continuation of Nimbus 6
ERB, are 1) to determine over a period of a year, the earth radiation budget on both synoptic and
planetary scales by simultaneous measurement of:

• Incoming solar radiation

• Outgoing earth-reflected (shortwave) and earth emitted long wave radiation by:

a. Fixed wide-angle sampling of these terrestrial fluxes at the satellite altitude.

b. Scanned narrow-angle sampling of the angular radiance components.

and 2) to develop angular models of the reflection and emission of radiation from clouds and earth
surfaces.

Measurements of radiation are obtained in 22 different optical channels. Ten solar channels
(labeled 1 through 10c) measure incoming solar radiation. Four earth--looking channels (11 through
14) with fixed wide-angle fields of view measure radiation from the entire earth disc. Eight earth-
viewing channels scan from nadir to horizon in several vertical planes with narrow-angle fields of
view. Channels (15-18) measure short wavelength radiation while (19-32) measure wavelength rad-
iation. Tables 3-1,3-2, and 3-3 present the spectral characteristics of solar, wide-angle and narrow-
angle channels, respectively.

3.2 Experiment Description

3.2.1 Solar Channels

The ERB experiment measures the incoming solar radiation in ten spectral channels as the satel-
lite orbits over the Antarctic, just before it starts its northward trip on the daylight side of the earth.
The spectral intervals monitored by the solar channels are illustrated in Figure 3-1, superimposed on
the 1971 standard extraterrestrial NASA curve. These bands were selected to provide measurements

*Complete ERB NET membership listed in Appendix B, page B-2.
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of the solar "constant", necessary for earth heat budget computations, and of solar energy in spectral
subdivisions in the ultraviolet and visible regions where solar emission variability may occur and where

uncertainties exist in present values of the solar emission spectrum. The two "solar constant" chan-

nels 3 and 10c measure the entire solar spectrum from <0.2/am to >50/am.

3.2.2 Fixed Wide-Angle FOV Channels

Earth-emitted infrared radiation and earth-reflected solar radiation are measured with fixed,

wide-angle FOV sensors. The four sensors have unencumbered fields of view of 121 degrees and
maximum fields of 133.3 degrees. From the Nimbus 7 orbit altitude of 955 km the earth subtends

an angle of 120.8 degrees. This angle is greater than that for the Nimbus 6 ERB because the Nimbus

6 orbit is higher; thereby reducing the angle subtended by the earth. The channel FOV's were not
modified for Nimbus 7.

The measurements taken by these channels provide a direct measure of the terrestrial flux pass-

ing through a unit area at satellite altitude. An integration of these measurements over the entire

globe, together with the solar constant observations, provide a measure of the net radiation balance

for the earth-atmosphere system. In principle, the accuracy of this measurement should be compro-

mised only by the diurnal sampling restrictions of the Nimbus sun-synchronous orbit. Measurements

of the radiation flux reflected in the shortwave region (0.2/am to 3.8/am), in addition to those of the

total earth radiation flux (0.2/am to >50/am), permit separation of the planetary albedo and long
wave flux components of the observed net radiation flux.

An earth flux channel (Channel 14) and a solar flux channel (Channel 5) measure radiation in

the 0.698/am to 2.8/am interval enabling the planetary albedo to be defined for the spectral subre-

gions ;_ < 0.695/am and _ > 0.695/am. These two spectral regions separate the total backscattered

radiation into the molecular-plus-aerosol contribution from the aerosol-dominant spectral contri-

bution. This separation is important for assessing the contribution of aerosols to any detectable
variations of the earth's planetary albedo.

3.2.3 Narrow-Angle FOV Scanning Channels

The ERB also obtains measurements of the radiance of earth-reflected solar radiation (0.2/am

to 4.8 tam) with Channels 15 through 18 and earth--emitted long wave radiation (5/am to >50/am)

with Channels 19 through 22. These channels, which have a rectangular IFOV of 0.25 degrees x

5.12 degrees are designed to obtain a large number of angularly independent views of the same geo-
graphical area as the Nimbus spacecraft orbits overhead. Characteristic angular distribution models

are derived for a variety of reflecting surface conditions from a composite of the scanning channel
observations of each area. These models are used wl'th the scanning channel observations to specify
radiation budgets on a scale of about 500 km.

3.2.3.1 Scan Geometry and Scan Modes

The basic scan geometry of the ERB is shown in Figure 3-2. The IFOV is stepped at varying
rates over each half second measurement to partially maintain a ground resolution of about 150 km
from nadir to horizon.
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To observe the radiance from various scenes over a wide variety of incident and emerging angles,

there are five different scan modes of operation. These routines are schematically illustrated in Fig-

ure 3-3. Four scan patterns are a composite of long and short grids shown in Figure 3-2 (a long grid
in the forward direction is followed by a short grid in the cross-track direction and then concluded

with a long grid in the aft direction). The fifth scan pattern is a composite of scan pattern 3 follow-

ed immediately by scan pattern 4. Scan modes 1, 2, 3, and 4 obtain a maximum number of angular
independent views of a given geographical area. When the instrument is in one of these four modes

of operation, that scan pattern is repeated every 112 seconds or every 700 km along the subpoint

track. These four scan modes ensure the ability to obtain numerous observations in the principal
plane of the sun, the plane in which the greatest angular variations in reflected sunlight occur. Scan

mode 5, which is the normal mode of operation to obtain maximum earth coverage, is repeated every

224 seconds or every 1400 km along the subpoint track.

Figures 3--4 and 3-5 show a complete scan pattern projected on an imaginary sphere coincident

with the earth's surface and fixed with respect to the satellite. The solid line with the arrowheads

indicates the motion of a point on the earth's surface relative to the imaginary sphere and scan pat-

tern. The small target areas considered for illustration are located at 40°N latitude in Figure 3-4 and
I

direction of motion

I

56 ° 56 °

MODE 4 MODE 3

MODE 5

MODE 2

Figure 3-3. ERB Scan Modes
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0 ° latitude in Figure 3-5. The shaded portions of the scan pattern indicate which FOV's contain the
target area. The area is first observed near the forward horizon (in the direction of satellite motion)
at a view angle of 58.5 degrees. During succeeding scan patterns, as the satellite approaches the area,
the area is viewed at angles of approximately 56, 51,49, 15, and 0 degrees. As the satellite moves
away from the area, radiance observations are made over the other half of the scanning plane at view
angles of 15, 40, 51,47, and 58.5 degrees. Consequently, a fairly complete picture of the angular
distribution of radiation emerging from this geographical area in the scanning plane is obtained. Fig-
ure 3-5 is presented to illustrate how the side grid scan helps to sense the angular distribution of rad-
iation from geographical areas which are not near the subpoint track.

3.2.3.2 Modeling the Angular Distribution of Radiance

The ERB scanning channel observations are used to model the angular distribution of the radi-
ance reflected and emitted by the earth and atmosphere. The models are required if the directional

radiance observations are to be converted into hemispheric fluxes. The scanning portion of the ERB
experiment was designed to obtain a number of angularly independent views of the same geographi-

-cal area so that empirical angular models can be developed.

Initial data processing involves sorting the scanning channel measurements as a function of geo-

graphical area. To accomplish this, the earth has been divided into 2070 target areas, each about 500

km square. As a matter of convenience in the data handling, the boundaries of the target areas are
chosen to coincide with the latitudes and meridians specified in Table 3-4. Each of these is further

subdivided into nine subtarget areas approximately 160 km on a side. Each ERB scanning channel

field of view (FOV) is located within one of these subtarget areas.

Table 3-4
ERB Scanning Channel Target Areas

Latitude Limits

Lower
Limit

0.0
4.5
9.0

13.5
18.0
22.5
27.0
31.5
36.0
40.5
45.0
49.5
54.0
58.5
63.0
67.5
72.0
76.5
81.0
85.5

Upper
Limit

4.5
9.0

13.5
18.0
22.5
27.0
31.5
36.0
40.5
45.0
49.5
54.0
58.5
63.0
67.5
72.0
76.5
81.0
85.5
90.0

Longitude Interval*

4.5
4.5
4.5
4.5
5.0
5.0
5.0
5.0
6.0
6.0
6.0
7.5
8.0
9.0

10.0
12.0
18.0
22.5
40.0

120.0

*For each latitude band the longitude intervals start at the 0 degree meridian and progress
east b y the Increments listed.
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Resultsof this sorting will be archived on magnetic tape together with the following information

concerning the character of each subtarget area: the amount of high, middle, and low clouds; the

fraction of land, water, snow, and ice; the topography of the land; and the mean solar zenith and

azimuth angles corresponding to the time of observation.

On the basis of this data set, angular distribution models will be developed by grouping sys-

tematically the angular data obtained from subtarget areas with similar characteristics over a given
time period. Each model will be classified into one of a small number (5 - 10) of categories which

sufficiently characterizes the different types of angular distribution found. As a result, one can

then define the range of surface type, solar angles, and cloudiness which belong to a given category.

Once this is accomplished, the set of angular distributions for each category may then be mathe-

matically described, most efficiently, as a series of several empirical orthogonal functions. Estima-
tion of the flux for any orbital pass over an area with known characteristics then reduces to

computing the coefficients of an expansion of the observations in orthogonal functions for the

appropriate category and integrating the resulting linear combination of functions over all direc-
tions of the upward hemisphere.

3.3 Instrument Description

3.3.1 Physical Layout

The ERB instrument consists of one radiometer unit, as shown in Figure 3-6 with the approxi-

mate dimensions of 33 cm x 36 cm x 48 cm and weight of 32.7 kg. All ERB electronics and optics are
located within the radiometer unit. The rotatable solar channel assembly is located on the +X sur-

face, facing forward in the direction of spacecraft motion. This assembly can be rotated 20 degrees
in 1 degree steps to either side of the spacecraft x-axis in order to acquire an on-axis view of the sun

under the expected variation of the satellite orbit plane with respect to the sun. The scanning chan-

nel assembly with the gimbal-mounted cylindrical scan head, and the fixed wide-angle earth-flux
channels are located on the +Z (nadir) face of the instrument. Adjacent to the solar channel assem-

bly on the +X surface is the diffuser-plate target for in-flight checks on the calibration of the short-

wave narrow-angle scanning channels. An earth shine shield has been added to this target on the
Nimbus 7 ERB.

3.3.2 Solar Channels

Each of the ten solar channels is an independent, individually replaceable modular element with

a mated amplifier as part of the unit. The sensors are advanced versions of wirewound-type thermo-

piles. There are no imaging optics in the solar channels; only filters, windows, and apertures. No

optical amplification is required to maintain high signal-to-noise ratios because the thermopile sen-
sitivities are high and state-of-the-art electronics are used. The spectral intervals of the solar channels

have been illustrated in Figure 3-1. Channels 1 and 2 are duplicated, Channel 1 being the reference

for Channel 2 for the in-flight calibration program. Channel 1 is normally shuttered. Channels 4 and

5 contain broad bandpass filters with transmittance spectra matching those of the standard Schott
glasses, OG530 and RG695, of the World Meteorological Organization. (The RG695 glass is also used

in Channel 14, one of the shortwave fixed earth-flux channels.) The filters are protected against par-
ticle radiation by 4 mm thick windows or hemispheres of fused silica. The interference filters are de-

posited on Suprasil W (grade III) fused silica substrates to minimize degradation. The transmittance

of a 2 mm thick piece of Suprasil W from 0.2/am to 5/_m is shown in Figure 3-7. Blocking out-

side the primary transmission bands, is achieved by interference layers only. No absorbing glasses
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are used. The radiation in the 0.2/am to 0.526/am, 0.526/am to 0.695 /am, and 0.20/am to

0.695/am is obtained by differential treatment of the channel 4 and 5 data, together with readings
obtained from Channel 2. Table 3-1 lists the solar irradiances at the receiver, the FOV, and

the measurement type for each channel. Channels 1 through 8 have type N3 thermopiles; Channel 9

has type K2. Channel 10C has a modified model H-F self calibrating cavity element. The cavity is
mounted to a circular wirewound thermopile. The electrical heater used for self calibration is ener-

gized when the "GO/NO GO" heater command is issued. The thermopile output and the heater volt-

age and current are then sub-multiplexed into the Channel 10C data stream.

As the satellite comes over the Antarctic region each orbit, the sun is viewed within the unen-

cumbered field for about three minutes. The unencumbered field is that for which the entire sun is

contained in the receiver FOV. The solar channels are monitored before and after solar acquisition in

order to obtain the space radiation reference (or "zero-level" response). The outputs of the solar

channels are sampled once per second.

3.3.3 Fixed Wide-Angle FOV Channels

The fixed wide-angle FOV channels are numbered 11 through 14. The FOV of each channel

encompasses the entire earth surface visible each moment from the Nimbus orbit. To allow for the
possibility of a small angular misalignment of these channels with respect to nadir, the FOV accept-

ance angle is slightly larger than that required to view the earth disc. In addition, Channel 12 has an

insertable stop so, upon command, it can view slightly less than the entire earth surface. On Nimbus
6 the sun would impinge on these channels twice per orbit at the day/night and night/day transitions

at an angle of about 58.5 degrees. This will not happen for Nimbus 7 unless the spacecraft is pitched

up or down, beyond normal operating limits.

Channel 11 is a duplicate of 12 and is used only occasionally as a calibration check of Channel

12. For Nimbus 7 the Channel 11 baffles have been painted black in order to investigate a "space

loading" sensor radiation induced signal offset. These two channels, with no filters or windows, mea-

sure the absolute irradiance over the band from 0.2/am to 50/am. The earthward-facing surfaces of

these channels are highly polished. Each employs a type N3 thermopile with a circular receiver.

These are fabricated from aluminized kapton on which a circle of cured Chemglaze Z-306 paint has

been applied and then overcoated with 3M-type 401-(210 black velvet optical paint. Channel 11

shares the "reference channel open" command with solar Channel 1 and is opened periodically, only

as directed in the in-flight calibration and data validation procedures.

Channel 13, the shortwave (0.2/am to 3.8/am) fixed earth-flux channel, is equipped with two

hemispheres of Suprasil W (grade III) fused silica. The spectral band matches that of solar Channels
1 and 2. The difference in measured radiation between Channel 11 (or 12 with full field) and Chan-

nel 13 is the long wave terrestrial component. Channel 13 is similar to a precision pyranometer.

Channel 14 has a broadband (RG695) filter hemisphere, to match the band of Channel 5. The
RG695 hemisphere (partial) of Channel 14 is between two Suprasil W, fused silica hemispheres. The

outer one is thick to attenuate panicle radiation which might damage the glass. The inner hemi-

sphere is the characteristic IR blocker included in all precision pyranometers. The use of RG695 as a
separator of the shortwave irradiance about its cutoff wavelength of approximately 0.7/am is a com-

mon practice in albedo measurements. After proper correction of the measured irradiance values of
Channels 13 and 14, the irradiance in the band between 0.20/am and 0.7/am is determined. Thus, the

primarily scattering and primarily absorbing regions of the shortwave reflected radiation are inde-
pendently assessed. Table 3-2 lists characteristics of these channels.
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3.3.4 Thermopilesin Channels1through14

Thedetectorsfor all thesolarandfixedwide-angleFOVchannelsareimprovedversionsof the
wirewound-typethermopilesemployedin the Eppley-JPLradiometers.TypeN3 isusedfor Chan-
nels1through8, and11through14. Thosein theearthchannels(11through14)haveacircular
blackenedareaon thereceiver,whilethosein thesolarchannels1through8 areblackenedoverthe
entiresquare.Channel9 hasatypeK2thermopile.Thisis largerthan theN3type,but of similar
construction.Channel10ChasacircularwirewoundmodelH-F thermopile.Tile thermopilesare
constructedto reactto aconductivethermaltransientin suchawaythat bothactiveandreference
receiverswill respondsimultaneouslyandequallyto thetemperatureoffset,thuscancellinganyoff-
setin the output signal.Also, the time constantsof the actualactiveandreferencecouplesare
matchedby positioncontrolduringtheplatingoperation.Thereceiversarematchedcoatedand
mountedin amannerwhichassurestimeconstantsnearbalance.Timeconstantsareapproximately
four secondsfor vacuumoperation.Themodificationof thecavitythermopileis that its coldjunc-
tionshaveafiat ratherthanacavityreceiver.Therewasnot enoughroomto fit therearcavityin
thevolumeavailablefor theretrofit. Thebalancerequirementisextremelyimportantfor thesolar
channelsbecausethemeasurementsaremadeduringathermalperiodwhenthesatellitecrossesthe
terminatorandits front facetakesthe full heatof the sun. Thisisverycriticalfor channel9 (and
channel10onNimbus6) whichhaveK2 thermopilesbecauseof the lowradiantinput in theultra-
violetbandsasopposedto thefull solarfulx andbecauseof therequiredhighsensitivity.For this
reasonK2 sensorsmustbebalancedto within 15 percentto meetthe measurementaccuracy
requirements.

3.3.5 InterferenceFiltersin Channels1through14

Sinceidealsquarewaveresponsecharacteristicscannotgenerallyberealized,filter factorsare
calculatedto specifythetransmittancecharacteristicsof mostfilters. Thefilter factorwhichis the
reciprocalof theeffectivetransmittanceshouldexhibitavariabilityof lessthanonepercentwhen
calculatedfor all possibleextraterrestrialsolarcurvesandfor the solarsimulatoremployedduring
testing.Thewavelengthlimits for thesolarchannelsaregiveninTable3-1. The filter factorsare
giveninTable3-7. Figure3-8 illustratesthespectraltransmittancefunctionsfor thebroadbandfil-
ters. Figures3-8 through3-i 1showthe transmittancecurves(whichcorrespondto thechannel's
relativespectralresponse)for the interferencefilter onChannels6through9.

3.3.6 Narrow-AngleFOVScanningChannels

Thecylindricalscanheadcontainsfour telescopesalignedsuchthat thetelescopecenterlines
are12degreesapartwhenprojectedonto thehorizontalplane.Thetelescopescontainoff-axismir-
ror objectiveswhicharedeployedto acceptacommonchopperinterruptingthebeamsimmediately
aheadof thefield stops.In additionto its time-sharingbeamsplitterfunction,the chopperalsosep-
aratesthebeamenergyinto thelongwavelength(4.5tamto 50+tam) and the short wavelength (0.2 tam

to 4.8/am) relays. Each relay consists of a field stop, spectral filter, cross-axis tilted relay mirror, refer-

red aperture stop, and detector. With the off-axis mirror objective and cross-axis tilted relay mirror

tilted equally with respect to the optical axis, the effects of polarization induced by reflection are

minimized. The detector is a pyroelectric element immune to solar exposure and intentionally defo-
cussed to provide uniformity in field response.
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The scan head is on a gimbal mounted on the main flame of the radiometer unit. The gimbal

arrangement allows the pointing direction of the scan head to be varied within a vertical plane by ro-

tation of the scan head, and within a horizontal plane by rotation of the gimbal. The pointing direc-

tion of the scan head is specified by two angles, a and _. The angle a, in the scan plane, is measured

between the nadir (tz = 0 _) direction and the curve connecting the upper edges of the FOV's. The

angle/3, in the plane perpendicular to the scan plane, is measured between the orbital plane and the

scan plane. Thus, the scan plane is the XZ plane when/3 = 0 °. The vertical motion is accomplished

with a stepper drive which rotates the scan head in steps of 0.25 degrees. The gimbal rotation is driven

by a stepper motor which rotates the gimbal in steps of 0.5 degrees.

The FOV's of the four telescopes are rectangular, 0.25 degrees x 5.12 degrees, and are arranged

so that with a = 60.6 degrees the upper corners of the FOV's lie along the earth's horizon as shown in

Figure 3-2. The narrow-angle (0.25 degrees) side of the FOV is in the direction of vertical (a) mo-
tion. The FOV's of the short wavelength channels (15 through 18) are coincident, respectively, with

those of the long wavelength channels (19 through 22).

The five scan modes described in Figure 3-3 are based on four gimbal position sequences and

one scan head rotation sequence. These sequences are defined in Table 3-6 in terms of VIP major

frame count from the start of the basic scan routine, the encoder position, and the angle of rotation.

Note that many of the channel output samples result from integration over several (4, 10, or 20) fields

of view. The scan head rotation speed is varied to accomplish this so that the sampling frequency of
two samples per second is constant.

The scan head may also be commanded to check and calibration positions called "space-look",

"longwave check" and "shortwave check".

3.4 Pre-launch Calibration

3.4.1 Solar Channels

The prelaunch calibration for the solar channels consists of a number of absolute intercompari-

sons and transfer operations. The reference for the absolute calibrations is the new World Radio-

metric Reference (WRR) scale which is embodied in a number of self-calibrating cavity radiometers.

Channel 10C of the Nimbus 7 ERB is itself such a device. This new scale can be referenced to previous

scales such as the International Pyrheliometric Scale (IPS 1956).

The four major solar channels (1,2, 3 and 10C)have been directly intercompared with self cali-

brating cavity instruments of both the JPL-PACRAD and Eppley model H-F types. The PACRAD
employed in this program has been an Eppley manufactuied version. The serial number is 11402.

This unit has been involved in a number of intercomparisons, including International Pyrheliometric

Intercomparison IV (IPCIV).

For transfer operations usually employing a solar simulator as source normal incidence pyrheli-
ometers (NIP) of the ERB reference set are employed. The two devices used for the solar channel

intercomparisons bear serial numbers 12016E6 and 12018E6. Both of these are also traceable to the
WRR.

When calibrating the filtered channels (4, 5, 6, 7, 8 and 9) the NIP is fitted with a filter wheel

containing matching filters to the flight set. The incident irradiance is calculated using the measured

irradiance and the appropriate filter factor-for the particular filter.

I
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Table 3-6

ERB Scan Head Positions During Scan

A. Alpha Encoder Positions*

Major
Frame Encoder Position

1 0(20)140, 150(I0)200, 204(4)224, 225(1)236

2 237(1)243, 3*263, 2*243, 242(-i)224, 220

3 216(-4)200, 190(-10)140, 120(-20)20, 8*0, 20(20)140

4 150(10)200, 204(4)224, 224, 224(-4)200, 190(-10)140, 120(-20)20

5 7*0, 20(20)140, 150(10)200, 204(4)224, 225(1)230

6 231(1)243, 3*263, 2*243, 242(-1)229

7 228(-1)224, 220(-4)200, 190(-10)140, 120(-20)20, 9*0

*Alpha encoder positions (m) represent the number of steps (1 step = 0. 25*

of rotation) from the reference position (0") so that the angle a is given

(in degrees) by a = 0. 25 • m (degrees).

eThis sequence of a angles (encoder positions) is the same for all scan routines.

eThe notation n] (n 2) n 3 is used for an arithmetic progression n] , n I + **2 ,

n I +2-n 2 ,..., n 3 . For example 0(20)140 can be written 0,20,40,60,...,

140, and 220(-4)200 is the same as 220,216,212,... ,200.

eThe notation n! * n 2 means n I occurrences of the value n 2 .

B. Beta Encoder Positions +

Major
Frame

1

2

3

4

5

6

7

Scan

Mode Encoder Positions

16 "512

4"512, M, 11"524

9*524, 3*M, 4*692

6*692, M, 9*704

3*M, 13"872

7*872, M._ 8*884

12"884, 4*M

Major

Frame

1

2

3

4

5

6

7

Scan

Mode Encoder Positions

16 *55 7

4*557, M, 11"569

9*569, 3*M, 4*692

6*692, M, 9*704

3*M, 13"827

7*827, M, 8*839

12"839, 4*M
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Table 3-6 (Continued)

Major
Frame

1

2

3

4

5

6

7

Scan

Mode

2

2

2

2

2

2

2

Encoder Posi_ons

16 *524

4*524, M, 11"512

9"512, 3*M, 4*344

6*344, M, 9*332

3*M_ 13"164

7"164, M, 8"152

12"152, 4*M

!Major

Frame

1

2

3

4

5

6

7

Scan

Mode

4

4

4

4

4

4

4

Encoder Positions

16 *479

4*479, M_ 11"467

9*467, 3*M, 4*344

6*344, M, 9*332

3*M, 13"209

7*209, M, 8"197

12"197, 4*M

+ Beta eneoder positions (n) represent the number of steps (1 step = 0. 5* of

rotation) from the reference position (no = 518) so that the angle p is given

(in degrees) by _ = 0. 5 (n - n o )
• The letter M in the table means that the scan head is in motion so that the

encoder readout may not be repeated exactly at those times.

The ERB reference sensor model (RSM), which is a duplicate of the flight instruments relative

to the solar channels, has been employed as a transfer and checking device throughout the Nimbus 6
and Nimbus 7 calibration programs. This device is being maintained in order to trace calibrations as

required. All vacuum calibrations of the Nimbus 6 and 7 ERB solar channels are referencable through
the RSM as well as many of the calibrations performed at atmospheric pressure.

It is reiterated here that Channel 10C of ERB on Nimbus 7 is a self calibrating cavity device which

does not rely on transfer calibration. There is no equivalent to channel 10C in the RSM.

The solar channels are not calibrated during thermal vacuum testing of the spacecraft. Their cal-

ibrations are checked during an ambient test after the thermal vacuum testing. Final calibration
values for the solar ctlannels are expressed in units of Counts/Watt/meter -2 (C/Wm -2) relating the

on-sun signal output to the incident extraterrestrial solar irradiance in the pertinent spectral band of
the channel.

3.4.2 Fixed Wide-Angle FOV Channels

There are longwave and shortwave calibrations of Channels 11 and 12. The longwave calibra-

tions are performed during thermal vacuum testing with a special blackbody source named the total

earth-flux channel blackbody (TECB). The source is a double cavity blackbody unit designed for

calibrating Channels 11 and 12 after they are mounted on the ERB radiometer unit. It operates over

a temperature range of 180 K to 390 K with an apparent emissivity under test conditions in vacuum

of 0.995 or greater. Temperatures are measured and controlled to an accuracy of 0. I°C during these

calibrations. These calibrations are performed during both Instrument and Spacecraft level testing.
The entire FOV of the channels is filled by the TECB including the annular ring which normally
views space in the angular element between the unencumbered and maximum FOV's. For Nimbus 7

Channel 12 was also calibrated for shortwave response by normal incident irradiation by the.solar

simulator while the instrument was in vacuum. The reference NIP was employed as the iransfer
standard during this calibration.
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Channels 13 and 14 are calibrated for response within their respective spectral bands only. These

tests were performed in the same manner as the shortwave calibration of Channel 12. For Channel

14 the reference NIP.is fitted with a matching RG695 filter (as for Channel 5) in order to isolate the

radiation to its proper spectral band.

An angular response scan is performed on each wide FOV channel in order to relate the normal
incidence calibrations described above to the overall angular response of the channels.

3.4.3 Shortwave Scan Channels

These channels are calibrated for radiance response by viewing a diffuse target. Three methods

have been employed. These are: the viewing of a smoked magnesium oxide (or Barium sulphate)

plate which is irradiated by the solar simulator, exposure in a diffuse hemisphere illuminated inter-
nally by tungsten lamps, and viewing a diffusing sphere from outside. The last method employs the

"Hovis Sphere" as source. For methods 1 and 3 the reference instrument is a high sensitivity NIP cal-

ibrated in terms of radiance. The second method employs a pyranometer as reference instrument.

Differences in the results obtained by the various methods are still under investigation. The sensitiv-

ity values selected for use are an average of methods 1 and 3. Unfortunately these tests can only be

performed at atmospheric pressure while the scan channel performance is superior in vacuum.

Another calibration of these channels is the in-flight check target. With the channels in the

shortwave check position (viewing the scan target) the instrument is irradiated by the solar simulator

beam. This test is performed at normal incidence when the instrument is in vacuum. The reference

is one of the reference NIP's. In air the instrument is similarly calibrated at a number of angles both

in elevation and azimuth to obtain the angular characteristics necessary for the reduction of in-flight

shortwave check operations.

3.4.4 Longwave Scan Channels

These channels are calibrated in vacuum at both the instrument and spacecraft level thermal

vacuum tests. The sensors view a special blackbody source called the longwave scanning channel

blackbody (LWSCB) which has a separate ca-city source for each channel. The procedure is straight-
forward and covers a range of temperatures covering the complete range of in-flight measurement

possibilities.

3.5 In-flight Calibration

In-flight calibration of the main solar channels may be referred to Channel 10C, a self-calibra-
tion channel using the cavity heater activated by the GO/NO GO heater command. In addition the

degradation of Channel 2 is checked by the occasional exposure of its duplicate Channel 1. Channels

with filters do not have a direct method of optically checking their calibration but must rely on what-
ever correlations are made with the main channels.

All the thermopile channels are equipped with a GO/NO GO heater. It is used to check for

response during prelaunch activities to assure that the channels are functioning. The heater can be

used in flight as a rough check for all except Channel 10C. Also, Channels 1 through 14 are equipped

with an electrical calibration which inserts a precision voltage at the input to the entire signal condi-
tioning stream. While the electronic calibration cannot be used to infer sensor or optics changes, it

insures prevention of misinterpretation of an electronic problem.
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Channel12relieson thestabilityof thepormallyshutteredmatchingChannel11. Channels13
and 14haveno inherentin-flight calibrationcapability.Theyrely on occasionallooksat the sun
duringthespacecrafttransitionsto aidinassessmentofdrift ordegradation.Forthismission,a space-
craft pitchmaneuverisrequired.For Nimbus6,thiscalibrationwasavailablefor eachorbit.

Channels15through18arecheckedusingtheshortwavescanchannelchecktargetaspreviously
described.Theyalsoviewspaceasa"zeroradiation"referenceto evaluateoffset.

Thelongwavescanchannelscanviewspaceor theonboardreferenceblackbody.Theyshare
the only true in-flight calibrationcapabilitywithChannel10C.

Additionalchecksarepossibleby comparingthewideFOVchannelswith the integralvaluesob-
tainedby thecorrespondingscanchannelsfor appropriatescenes.

3.6 DataProcessing,Products,andAvailability

3.6.1 DataProcessing

TherawERBtelemetrydataandlocationinformationareprocessedontomagnetictapesby the
MetOCCatGSFCandsentto SACC.SACCgeneratestapesdescribedin Section3.6.2. IPDusesthe
MATRIX andTABLEStapesto makethe 16mmmicrofilmdisplays.Duplicatecopiesof theMAT,
SEFDT,andZMT are sent to NET members requesting these tapes. All original tapes and microfilm
are then sent to NSSDC where tape copies are made available to users.

3.6.2 Tape Products

The following tapes are produced by SACC, used by IPD, and then sent to the NSSDC for ar-
chiving. Brief descriptions of these tapes are as follows:

MAT (Master Archiving Tape)

Contains calibrated and raw digital data values for all channels, plus values of temperature
monitoring, orbit, attitude, and DSAS data.

• MATRIX (Mapped Data Matrix Tape)

Contains daily, six day, monthly, and three month world grids of data, and polar stereogra-
phic map matrices of derived parameters. (This tape is utilized in generating the contoured
map microfilm displays.)

• SEFDT (Solar and Earth Flux Data Tape)

Contains up to 30 days of solar data (Channels 1 through 10) and earth flux data (Channels
11 through 14) stripped from the MAT.

• TABLES (ERB tables for microfilm display)

Contains data for production of all ERB tables on microfilm listed in Table 3-7.

• ZMT (Zonal Means Tape)

Contains in computer-compatible format the tabular listings of solar irradiance, zonally aver-

aged insolation, logitudinal and latitudinal averages of earth flux, albedo, and net radiation.
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Theform andcontentof eachof thesetapesisspecifiedin atapespecificationdocumentfor
eachtapetype.

Theappropriatedocuments will accompany a tape shipment to a user. See Section 1.5 of this
document for details.

3.6.3 Display Products

There are 26 different types of ERB map products and 11 different types of tabular listings pro-
duced on 16 mm microfilm. Table 3-7 lists the titles of all these displays and the film specification

number pertaining to each title. Interpreting the fourth digit from the left in each film specification

number gives the frequency of production of each display.

XXXl XX -

XXX4XX =

XXX7XX =

XXX8XX =

produced every day;

produced every six days,

produced every month, and

produced every three months.

All ERB map displays have the same format. Figure 3-12 is an example. The only differences

are in data content within the maps (the display title identifies the data content), and in the time

span of the display.

One northern hemisphere and one southern hemisphere polar stereographic map are at the top

with a Mercator map immediately below. The Mercator map (with an equatorial scale equal to the
equatorial scale of the polar maps) provides overlapping (and redundant) coverage between the two

polar maps. Contouring information for all three maps is beneath the Mercator map. The "on-off-

cycle" scale identifies the days of data contributing to the contoured values. If a day is "filled in"

the instrument was on, data was collected, interpreted, and used in the contouring. If a day is not
filled in, the instrument was either off or the data was unuseable for some reason. Title and refer-

ence information at the bottom are mostly self-explanatory. The right half of the last line, however,

requires explanation. These items are: the physical tape number the data is stored on (TXXXXX),

the algorithm reference number used in processing the data (ALGO XXX), the film specification

number (F 133XXX), the project data format code (AA), and the film frame number (XXXXXX).

Examples of the ERB table displays are given in Figures 3-13 through 3-19. Examples of the

NFOV observations (last three titles in Table 3-6) are not shown as they are identical to the WFOV

observations displays. Interpretation of the last line on the table displays is the same as for the maps.
The only difference is that the PDFC is AB for ERB tables.

3.6.4 Data Availability

The ERB experimental data consisting of the magnetic tapes described in Section 3.6.2 and the

16 mm microfilm maps and tables listed and illustrated in Section 3.6.3 are archived at the NSSDC.

These data will be available to the archive center three to six months after launch. Users requesting

ERB data should read Section 1.5 of this document for general tape and film ordering information.
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Table3-7
ERBMicrofilmProducts Titles and Specification Numbers

Film

Spec
Number

133701

133801

133702

133802

133703

133803

133704

133804

133705

133805

133406

133706

133806

133707

133807

133708

133808

133709

133809

133410

133710

133810

133711

133811

133712

133812

133713

133813

133714

133814

133715

133815

Film Product Title

MAPS

L.W. TERRESTRIAL FLUX FROM WFOV OBSERVATIONS - ASCENDING NODE

L.W. TERRESTRIAL FLUX FROM WFOV OBSERVATIONS - DESCENDING NODE

L.W. TERRESTRIAL FLUX FROM WFOV OBSERVATIONS - ASC+DSC NODE

DATA POPULATION OF WFOV OBSERVATIONS - ASCENDING NODE

DATA POPULATION OF WFOV OBSERVATIONS - DESCENDING NODE

DATA POPULATION OF WFOV OBSERVATIONS - ASC + DSC NODE

EARTH ALBEDO FROM WFOV OBSERVATIONS (0.2 - 4.0 tam)

EARTH ALBEDO FROM WFOV OBSERVATIONS (0.7 - 3.0/am)

EARTH ALBEDO FROM WFOV OBSERVATIONS (0.2 - 0.7/am)

NET RADIATION FROM WFOV OBSERVATIONS

L.W. TERRESTRIAL FLUX FROM NFOV OBSERVATIONS - ASCENDING NODE

L.W. TERRESTRIAL FLUX FROM NFOV OBSERVATIONS - DESCENDING NODE

L.W. TERRESTRIAL FLUX FROM NFOV OBSERVATIONS - ASC + DSC NODE

DATA POPULATION OF NFOV OBSERVATIONS - ASCENDING NODE

DATA POPULATION OF NFOV OBSERVATIONS - DESCENDING NODE

!
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Table3-7 (Continued)

Film

Spec
Number

133416

133716

133816

133717

133817

133718

133818

133419

133719

133819

133720

133721

133722

133723

133724

133725

133726

136160

136460

136760

136860

136461

136761

136861

136462

136762

136862

Film Product Title

MAPS

DATA POPULATION OF NFOV OBSERVATIONS - ASC + DSC NODE

EARTH ALBEDO FROM NFOV OBSERVATIONS

MINIMUM EARTH ALBEDO FROM NFOV OBSERVATIONS

NET RADIATION FROM NFOV OBSERVATIONS

PERCENTAGE AREA OF CLOUDINESS FROM THIR 11.5 tam DATA

NORMALIZED DISPERSION OF L.W. TERRESTRIAL FLUX FROM WFOV

OBSERVATIONS - ASCENDING AND DESCENDING NODE

NORMALIZED DISPERSION OF EARTH ALBEDO FROM WFOV OBSERVATIONS

NORHALIZED DISPERSION OF NET RADIATION FROM WFOV OBSERVATIONS

NORMALIZED DISPERSION OF L.W. TERRESTRIAL FLUX FROM NFOV

OBSERVATIONS - ASCENDING AND DESCENDING NODE

NORMALIZED DISPERSION OF EARTH ALBEDO FROM NFOV OBSERVATIONS

NORMALIZED DISPERSION OF NET RADIATION FROM NFOV OBSERVATIONS

TABLES

MEAN NORMALIZED SOLAR IRRADIANCE (and) ZONALLY AVERAGED
INSOLATION

NET RADIATION FROM WFOV OBSERVATIONS (meridional)

NET RADIATION FROM NFOV OBSERVATIONS (meridional)
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Table3-7 (Continued)
Film
Spec

Number

136763
136863
136764
136864
136765
136865
136766
136866
136767
136468
136768
136868
136769
136869
136770
136870

FilmProductTitle

TABLES

TERRESTRIAL FLUX FROM WFOV OBSERVATIONS

TERRESTRIAL FLUX FROM NFOV OBSERVATIONS (meridional)

EARTH ALBEDO FROM WFOV OBSERVATIONS

EARTH ALBEDO FROM NFOV OBSERVATIONS

MONTHLY STATUS AND CALIBRATION SUMMARY

NET RADIATION FROM NFOV OBSERVATIONS (zonal)

EARTH ALBEDO FROM NFOV OBSERVATIONS (zonal)

TERRESTRIAL FLUX FROM NFOV OBSERVATIONS (zonal)
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MEAN NORMAL SOLAR IRRADIANCE

ONE MONTH AVERAGES

CHANNELS 1 THRU I0C

ERB
NIMBUS 7

Ol AUG 80 THRU 3! AUG 80
ORBITS 09776 THRU 10202

EARTH-SUN DISTANCE (A.U.) MIN = X.XXXX MAX = X.XXXX

MEAN
CHANNEL SPECTRAL BAND IRRADIANCE STANDARD RANGE DELTA

NUMBER (MICROMETERS) (W/M*2) DEVIATION (MAX.) MEAN

XXXX.X X.XX XX.XX X.XX1 0.18-3.8
2 0.18 -3,8
3 0.2-50+
4 0.530-2.8
5 O. 695-2.8
6 O. 395-0. 508
7 O. 344-0. 460
8 O. 390-0.410
9 O. 275-0. 360

10C 0.2-0.50+

XXX.XX

XXXX.X X.XX XX.XX X.XX

ZONALLY AVERAGED INSOLATION

ONE MONTH AVERAGES

CHANNELS 2, 3, 4, 5, AND I0

NORTHERN HEMISPHERE

UIAN 2 CHAN 3 CHAN 4 CHAN 5 CHAN I0C LATITUDE

(W/M 2)(W/_'2) (W/M*2) (W/M*?) (W/M*2) BELT

85.5-90.0
81.0-85.5
76.5-81.0
72.0-76.5
67.5-72.0
63.0-67.5
58.5-63.0
54.0-58.5
49.5-54.0
45.0-49.5
36.0-40.5
31.5-36.0
27.0-31.5
22.5-27.0
18.0-22.5
13.5-18.0

9.0-13.5
4.5- 9.0
0.0- 4.5

XXXX.X XXXX.× XXXX.X XXXX.X XXXXX

'qr

XXXX.X XXX) .X XXXX.X XXXX.X XXX.X

SOUTHERN HEMISPHERE

CHAN 2 CHAN 3 CHAN 4 CHAN 5 CHAN 10C
!W/M*2) qWIM*P_ (W/M*2_ (W/M.P_(W/M.2)

XXXX.X XXXX.X XXXX.X XXXX.X XX.XX

q

XXX)(.X XXXX.X XXXX.X XXXX.X XXXXX.X

TXXXXX ALGO XXX F136860 ABXXXXXX

I

Figure 3-13. Mean Normal Solar Irradiance Display Format
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LATITUDE
BELT

85.5-90.0N
81.0-85.5N
76.5-81. ON
72.0-76.5N
67.5-72. ON
63.0-67.5N
58.5-63. ON
54. O- 58,5N
49.5-54. ON
45.0-49.5N
40.5-45. ON
36.0-40.5N
31.5-36. ON
27.0-31.5N
22.5-27. ON
18.0-22.5N
13.5-18,0N

9.0-13.5N
4.5- 9.ON
0.0- 4._

EARTH ALBEDO FROM WFOV OBSERVATIONS

ONE MONTH MEAN ZONAL AVERAGES

CHANNELS 2,5,13 AND 14

ERB OIAUG80 THRU 31AUG80
NIMBUS 7 ORBITS 09776 THRU 10204

0.2-3.8ken 0.7-2.8pm 0.2-0.7_m 0.2-3.8pm 0.7-2.8pm
ALBEDO ALBEDO ALBEDO ALBEDO ALBEDO

(%) (%) (%) (%) (%)

XX XX XX XX XX

XX XX XX XX
xx

LATITUDE
BELT

85.5-90.0N
81.0-85.5S
76.5-81.0S
72.0-76.5S
67.5-72.0S
63.0-67o5S
58.5-63.0S
54.0-58.5S
49.5-54.0S
45.0-49.5S
40.5-45.0S
36.0-40.5S
31.5-36.0S
27.o-31.5S
22.5-27.0S
18.0-22.5S
13.5.18.0S

9.0-13.5S
4.5- 9.0S
0.0- 4.5S

TXXXXX ALGO XXX F136765 ABXXXXXX

0 2-0
ALBEDO

(%)

XX

Figure 3-14. Earth Albedo From WFOV Observations Display Format
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LONGITUDE
ZONE

O0-09E
09-18E
18-27E
27-36E
36-45E
45-54E
54-63A
63-72E
72-81E
81-90E
90-99E
99-I08E
108-117E
l17-126E
126-135E
135-144E
144-153E
153-162E
162-171E
171-]80
18O-171W
171_162W
162-153W
153-144W
144-135W
135-126W
126-117W
ll7-108W
I08-99W
99-90W
9O-81W
81-72W
72-63W
63-54W
54-45W
45-36W
36-27W
27-18W
18-09W
09-00

EARTH ALBEDO FPOM NFOV OBSERVATIONS

ONE MONTH MERIDIONAL VARIATIONS OVER LATITUDE BELTS

CHANNELS 2 AND 15 THRU 18

OIAUG80 THRU 31AUG80
ORBITS 09776 THRU I0204

ERB
NIMBUS 7

ALBEDO (%)

LAT LAT LAT LAT LAT LAT LAT
18N-13.5N 13.5N-O9N 09N-4.5N 4.5N-00 00-4.5S 4.5S-09S 09S-14.5S

XX XX XX XX XX XX XX

XX XX XX XX XX XX XX

TXXXXX ALGO XXX F136766 ABXXXXXX

LAT
13.5S-18S

XX

XX

Figure 3-15. Eart_ Albedo From NFOV Observations Display Format
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NET RADIATION FROM WFOV OBSERVATIONS

ONE MONTH MEAN ZONAL AVARAGES

CHANNELS 2, 3, 12, 13

ERB
NIMBUS 7

Ol AUG 80 THRU 31 AUG
ORBITS 09776 THRU 10204

LATITUDE
BELT

85.5-90. ON
81.0-85.5N
76.5-81. ON
72.0-76.5N
67.5-72. ON
63.0-67.5N
58.5-63. ON
54.0-58.5N
49.5- 54. ON
45.0-49.5N
40.5-45. ON
36.0-40.5N
31.5-36.0N
27.0-31.5N
22.5-27.0N
18.0-22.5N
13.5-18.0N

9.0-13.5N
4.5- 9.ON
0.0- 4.5N

NET
RADIATION

(W/M*2)

 xxx

Cxxx

LATITUDE
BELT

85.5-90.0S
81.0-85.5S
76.5-81.0S
72.0-76.5S
67.5-72.0S
63.0.67.5S
58.5.63.0S
54.0.58.5S
49.5.54.0S
45.0.49.5S
40.5.45.0S
36.0-40.5S
31.5-36.0S
27.0-31.5S
22o5-27.0S
18.0-22.5S
13.5-18.0S

9.0-13.5S
4.5- 9.0S
0.0- 4.5S

8O

NET

RADIATION
(W/M*2)

CXXX

CXXX

TXXXXX ALGO XXX F136761ABXXXXXX

Figure 3-16. Net Radiation From NFOV Observations Display Format
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LONGITUDE
ZONE

O0-09E
09-18E
18-27E
27-36E
36-45E
45-54E
54-63A
63-72E
72-81E
81-90E
90-99E
99-I08E

I08-I17E
I17-126E
i26-135E
135-144E
144-153E
153-162E
162-171E
171-180
180-171W
171-162W
162-153W
153-144W
144-135W
135-126W
i26-I17W
I17-I08W
I08-99W

99-90W
90-81W
81-72W
72-63W
63-54W
54-45W
45-36W
36-27W
27-18W
18-09W
09-00

NET RADIATION FROM NFOV OBSERVATIONS

ONE MONTH MERIDIONAL VARIATIONS OVER LATITUDE BELTS

CHANNELS 2, 3 AND 15 THRU 22

ERB Ol AUG THRU 31 AUG 80
NIMBUS 7 ORBITS 09776 THRU 10204

NET RADIATION (W/M*2)

LAT LAT LAT LAT LAT LAT LAT
IBN-13.5N 13.5N-O9N 09N-4.5N 4.5N-00 00-4.5S 4.5S-098 09S-13.5S

txxx txxx txxx txxx _xxx _xxx _xxx

txxx txxx txxx tx_x tx£x txxx txxx

TXXXXXALGOXXXF136762ABXXXXXX

Figure 3-17. Net Radiation From NFOV Observations Display Format

LAT
13.5S-18S

txxx

_.XXX
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LATITUDE
BELT

85.5-90.ON
81.0-85.5N
76.5-81.ON
72.0-76.5N
67.5-72.ON
63.0-67.5N
58.5-63.ON
54.0-58.5N
49.5-54.ON
45.0-49.5N
4O5-45.ON
360-40.5N
315-36.ON
270-31.5N
225-27.ON
180-22.5N
135-18.0N
9 0-I 3.5N
4 5- 9.ON
0 0 4.ON

DAYTIME
FLUX

(W/M*2)
XXX

XXX

TERRESTRIAL FLUX FROM WFOV OBSERVATIONS

ONE MONTH MEAN ZONAL AVERAGES

CHANNELS 12 AND 13

ERB OIAUG80 THRU 31AUG80
NIMBUS 7 ORBITS 09776 THRU 10204

NIGHTTIME DAY & NIGHT DAYTIME NIGHTTIME
FLUX FLUX FLUX FLUX

(W/M,2) W/M,2) (W/M*2) (W/M *2)

XXX XXX XXX XXX

XXX XXX XXX XXX

LATITUDE
BELT

85.5-90.0S
81.0-85.5S
76.5-81.0S
72.0-76.5S
67.5-72.0S
63.0-67.5S
58.5-63 OS
54.0-58 5S
49.5-54 OS
45.0-49 5S
40.5-45 OS
36.0-40 5S
31.5-36 OS
27.o-31 5S
22.5-27.0S
18.0-22.5S
13.5.18.0S

9.0-13.5S
4.5- 9.0S
0.0- 4.5S

TXXXXX ALGO XXX F136765 ABXXXXXX

DAY &
FLUX

(W/M*2)

XXX

XXX

NIGHT

Figure 3-18. Terrestrial Flux From WFOV Observations Display Format
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LONGITUDE
ZONE

O0-09E
09-18E
18-27E
27_36E
36-45E
45-54E
54-63A
63-72E
72-81E
81-90E
90-99E
99-I08E
108-117E
I17-126E
126-135E
135-144E
144-153E
153-162E
162-171E
171-180
]80-171W
171-162W
162-153W
153-144W
144-135W
135-126W
126-117W
ll7-108W
I08-99W
99-90W
90-81W
81-72W
72-63W
63-54W
54-45W
45-36W
36-27W
27-18W
18-09W
09-00

TERRESTRIAL FLUX FROM NFOV OBSERVATIONS

ONE MONTH MERIDIONAL VARIATIONS OVER LATITUDE BELTS

CHANNELS 19 THRU 22

ERB
NIMBUS 7

OIAUG80 THRU 31AUG80
ORBITS 09776 THRU 10204

DAY PLUS NIGHT FLIIX(w/m?)

LAT LAT LAT LAT LAT LAY LAT

18N-13.5N 13.5N-O9N 09N-4.5N 4.5N-00 00-4.5S 4.5S-098 09S-13.5S

XXX XXX XXX XXX XXX XXX XXX

XXX (XX XXX XXX XXX XXX

TXXXXX ALGO XXX F136764 ABXXXXXX

XXX

LAT,
13.5S-18S

XXX

XXX

Figure 3-19. Terrestrial Flux From NFOV Observations Display Format
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SECTION 4

THE LIMB INFRARED MONITOR OF THE STRATOSPHERE (LIMS) EXPERIMENT

by

J. M. Russell*

Langley Research Center, Hampton, VirgirSa 23665

and

J. C. Gille*

National Center for Atmospheric Research**, Boulder, Colorado 80303

4.1 Introduction

The Limb Infrared Monitor of the Stratosphere (LIMS) experiment is being conducted to deter-

mine global scale vertical distributions of temperature and several gases involved in the chemistry of
the ozone in the stratosphere. This will allow detailed study of the chemistry, especially of the nitro-

gen compounds related to ozone distribution, as well as determinations of geostrophic winds and

transport of trace constituents. Profiles of ozone (O3), nitrogen dioxide (NO2), nitric acid (HEO3),

water vapor (H20), and temperature are determined with high vertical resolution from the lower
stratosphere (-_10 km) to the lower mesosphere (_65 km). This list of measurements includes the

catalyst in the chain of NO x reactions that destroy ozone (NO 2) as well as the end product responsi-

ble for removal of NO x from the stratosphere (HNO3). These data are determined by inverting measured
limb radiance profiles obtained by LIMS, an infrared multispectral scanning radiometer. Measure-

ments are made in each of six spectral regions: one in the 9.6/am 0 3 band, one in the 6.3/am NO 2

band, one in the 6.2/am H20 band, one in the 11.3/am HNO 3 band, and two in the 15/am band of

CO 2 •

This experiment is a follow-on to the successful Limb Radiance Inversion Radiometer (LRIR)

experiment flown on Nimbus 6 (Reference 1) to measure 03, H20, and temperature. The LIMS in-
strument is identical to the LRIR in many respects but is significantly different in that two detectors

were added to the focal plane array and five parameters rather than three are being measured. The
horizon scan rate was also decreased from one degree per second to one quarter degree per second to

provide improved signal-to-noise performance. These changes facilitate measurement of constituents

with small signals (e.g. NO2, HNO 3) and allow extension of the measurements to lower and higher
altitudes.

A programmed scanning mirror in the radiometer causes the field of view of the six detectors to
make coincident vertical scans across the earth's horizon. (See Figure 4-1 for description of limb-

viewing geometry). The data from these scans are stored on a tape recorder for later transmission to

the ground. During data reduction the measured limb radiance profiles from the carbon dioxide

channels are operated on by inversion algoritlams to determine the vertical temperature distribution.

This inferred temperature profile, together with the radiance profiles in the other channels, are then
used to infer the vertical distribution of the trace constituents.

*Co-team Leader of the LIMS Nimbus Experiment Team - other NET members are listed in Appendix B.

**Sponsored by the National Science Foundation.
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Figure 4-1. LIMS Viewing Geometry

4.2 Scientific and Technical Objectives

4.2.1 Scientific Objectives

The objective of the LIMS program is to obtain the global distributions of temperature, ozone,
and three other trace gases related to ozone chemistry, and to apply these observations (in conjunc-

tion with results from other Nimbus 7 sensors) to the solution of upper atmosphere chemistry, radia-
tion, and dynamics.

The limb scanning technique received its first satellite-borne test with the Limb Radiance

Inversion Radiometer (LRIR) on Nimbus 6. LRIR successfully measured the stratospheric 0 3 con-
centration and temperature field over a seven month period beginning in June 1975. Figures 4-2 and

4-3 show sample LRIR vertical prof'des of temperature and 0 3 as compared to near simultaneous
measurements made by in situ rocket soundings. Using sequential estimation techniques (Rodgers,

1976) it is possible to fourier analyze large time (_ weeks) and spatial (4 ° latitude circles from 64°S
to 84°N) sets of data to produce global maps of the measured fields as a function of time as in Fig-

ure 4-4. The LIMS uses the same techniques to produce standard output mapped products for tem-

perature, 03, H20, HNO3, and NO 2.

72



A

¢n
E

i,1
tY

tu0
IM
tY
IX.

0.01 -

--70

0.1

--60 " .

I 50

40 . •

I0 30 ROCKET

/ _Z ........

I0OO 

180 200 220 240 260 280 300 520

TEMPERATURE "(K)

Figure 4-2. LRIR Temperature Retrieval (Antiqua, Dec. 17, 1975) Compared with
Rocket Results

The ability to monitor the time variations of the global distributions of temperature and trace

gases in the 10-70 km region is important to the understanding of interrelationships between dynam-

ics and chemistry. Chemistry determines in large measure the global stratospheric temperature dis-
tribution, which is, itself, responsible for the global wind fields. The winds, in turn, transport the

chemical species, continuing the cycle.

Some specific scientific objectives for the LIMS experiment are:

• To understand the chemistry and transport of stratospheric NO x including sources and sinks,
and possible feedbacks upon the dynamics
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Figure 4-3. LRIR Ozone Retrieval Compared with Rocket Results

To utilize the capabilities of the LIMS for initial analyses of a variety of stratospheric dy-
namic phenomena, including planetary waves, equatorial waves, and high frequency waves,

plus global modes

To determine the relationship between temperature and 0 3 mixing ratio and its dependence
on height, latitude, and season in the photochemically controlled altitude regions

To determine the response of LIMS measured fields to perturbations within the earth's geo-
physical environment due to solar and cosmic ray variability, etc., and how these changes

might correlate with temperature

74



23O

230

_I0

220

230

NP

230

Figure 4-4. LRIR Temperature Map Results for 10 mb Level-Descending Node

To determine the temporal and spatial distributions of transports of chemical constituents,
heat, momentum, energy, and potential vorticity by geostrophic and possibly ageostrophic
motions

To prepare a climatology of the northern and southern hemispheres, containing statistical
information on the temporal and spatial variability of the stratospheric variables as measured
by LIMS

To study day-night difference in trace gas concentrations (especially NO 2 and 0 3) and tem-
perature and to use these data in testing photochemical models and assessing the magnitude
of tidal motions

To utilize the improved constituent profiles in radiative energy budget calculations of the
middle atmosphere

To employ lower stratospheric LIMS data in a study of stratospheric-troposphere exchange,

with particular eml;hasis on 0 3 injections and tropopause folding

To search for evidence ofsecondary maxima in the 0 3 profiles and correlate with meteoro-
logical phenomena
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4.2.2 Limb Scan Features

Refering to Figure 4-1, LIMS receives infrared radiation emitted by the atmosphere along a ray

path that may be identified by the height (tangent height) or point (tangent point) closest to the sur-

face. The atmosphere may be scanned by sweeping the view direction from tangent heights below

the horizon (ray paths intersecting the surface) to high altitudes. The following advantageous features
of limb scanning are apparent from a consideration of Figure 4-1.

• High inherent vertical resolution

For geometric reasons, a small portion of the signal originates from below the tangent height,

and most of the signal originates from a 4 km to 5 km layer above the tangent height.

• Zero background

For heights above the horizon, all radiation received originates in the atmosphere, and all

variations in signal are due to the atmosphere since the radiation is viewed against the cold
background of space.

• Large opacity

There is at least 60 times more emitting gas along a horizontal path grazing the surface than

there is in a vertical path to the tangent point. Thus, the atmosphere can be sampled to high
altitudes.

There are, of course, disadvantages associated with these features. The long paths mean that even

for rather transparent spectral regions, it is difficult to see the solid surface of the planet. A cloud a-

long a path acts as a body of infinite opacity, and may cause a considerable alteration in the emerging
radiation. For the earth's atmosphere, clouds are usually below the tropopause. This suggests that

reliable operation be limited to the upper troposphere and above. Even this area will be subject to
occasional clouds.

The radiative transfer equation for a non-scattering atmosphere is local thermodynamic equili-
brium may be written as

fS dri(h'x)I i (h) = Bi (r) _ dx (1)
dx

where I is the observed radiance at tangent height h and spectral interval i, B is the Planck blackbody

function, T is temperature, x the distance coordinate along the ray path, with the origin at the tangent

point and positive toward the satellite (located at +oo), and r(h,x) the mean transmission in the spec-
tral interval along the path with tangent height h from point x to the satellite.

The temperature inversion problem is to determine B and therefore T from measurements of I,
assuming that dr/dx is known. The latter requires that the distribution of the emitting species be

known, which in practice means that radiation from CO2, a uniformly mixed gas, is measured. In the
limb problem dr/dx is also crucially affected by the atmospheric structure.

In the case of the constituent inversion problem, the solution to the temperature inversion prob-
lem is utilized with the constituent limb radiance profile to determine the gas concentration as a
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function of altitude (References 2 and 3). In Equation (1), B is known from the temperature solu-

tion. The constituent concentration is determined as an implicit function of transmission.

4.2.3 Technical Objectives

The LIMS experiment is an important next step in an evolving technology for study of the atmo-

sphere using limb sounding. The experiment follows and advances research capabilities demonstrated

with the successful flight of LRIR on Nimbus 6. A specific objective of LIMS is to show the capa-

bility for remote sensing of tenuous trace species (e.g. HNO3, NO2, H20) with high vertical resolution.

Features of the LRIR instrument such as internal reflections that led to spurious signal levels have
been substantially reduced in the LIMS instrument. Advances in detector performance have led to

improved signal-to-noise performance. These improvements will be tested in the LIMS experiment
to show the potential of the limb emission sounder for future long-term observations of minor trace

gases. Algorithms have been developed to perform rapid inversions of limb radiance data and to

invert signals from two gases simultaneously where spectral overlap occurs. The LIMS experiment

allows these algorithms to be tested, verified, and refined for future application.

4.3 Instrument Description

4.3.1 LIMS Operation

The LIMS instrument is shown in Figures 4-5 and 4-6. It consists of two electronic units and a

frame housing assembly (FHA). The FHA is divided into two sections consisting of the solid cryogen

LIMB INFRARED MONITOR

iNI
=TAT,:SEA'EOOE.AR_ _i I ll-:i'"llll I"X r MO_U.E.'.SULAT,O.

I IT'-,L,__5111 I + _-'i/ I _METHAN FILL &

AMMONIA FILL & VENT----_] _ _ _w _L_ LN2 INLET VEI(T

FRAME-HOUSIN(I ELECTRONICS UNIT |FEU) LN 2 EXHAUST __¢_'_-_/

_- FOCAL'LA

y

INTERFACE ELECTRONICS UNIT (IEU) ,'_ _

SCANM,RRO.J : _.._.___//," ,:_,lZt,_ BAFFLE ASSEMBLY

Figure 4-5. LIMS Instrument Configuration
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Figure 4-6. LIMS Proto-Flight Model Instrumentation Installed on Mounting Yoke 

package (SCP) located above the instrument mounting plate and the optical mechanical package 
(OMP) located below the mounting plate. The OMP contains the primary optics of the instrument 
and the SCP contains the six spectral detectors. 
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The earth's limb energy is directed through the hood and baffle assembly to the scan mirror as

shown in Figure 4-7. The beam is directed from the scan mirror (M1) to an i8 cm off-axis parabolic

mirror (M2) and then through the focal plane subassembly containing a secondary off-axis parabolic

mirror (M3). The secondary parabolic recollimates the energy into a folding mirror (M4) and into

the detector capsule assembly (DCA). The CdTe lens at 300°K focuses the beam from the OMP pri-

mary optics to a thermally baffled secondary field stop at the 142°K static sealed dewar (cooled by

cryogenic package). A 0.32 cm thick window of Irtran VI behind this stop on the dewar allows ener-
gy into the DCA. Then back-to-back parabolas (M7 and M8) focus to the detector with a final cor-

rection from an f/3 to an f/1 system by an Irtran V 1 lens. The parabolic mirrors behind the Irtran

V 1 window operate at 152°K and the final Irtran V 1 lens operates at 64°K. The focused energy is di-

rected onto an array of HgCdTe detectors mounted to a cold finger imbedded in the inner CH 4 stage

of a solid cryogen cooler (64°K). The cooler outer stage is NH 3.

M1 SCAN

M9

I I
l r"l',_(Hg,Cd]Te DETECTORS

IFOV MASK _,.-L-1_-_ I
' BAND FILTERS

IRTRAN VI

(65OK) I

DETECTOR CAPSULE

ASSY (DCA)

M7 & H8 PARABOLIC

{152°1

MIRROR (AL)
I

I

M6 IRTRAN Vl WIN[

THERMAL MASK

[152°K! I MS CdTe LENS 1
I

FIELD !

MIRRORS {S.S}

M3 PARABOLIC

MIRROR (AL)

ORBITAL MECH.

I/_' PACKAGE (OMe)

FOLDING MIRROR(AL)

LIGHT CHOPPER |
I

M2 PARABOLIC MIRROR (AL)

Figure 4-7. LIMS Optical Schematic
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Theopticalviewsof theLIMS channelsandtheir locationsrelativeto the limb sceneareshown
in Figure4-8. Theangularresolution(in milliradians)of eachdetectorandtheir angularpositions
relativeto eachotherareindicated.Whentheentireviewis projectedthroughtheatmosphereat the
limb,perpendicularto averticalplaneat thetangentpoint, thesampledareaencompassesarectangle
that is about56kmin thehorizontalby 61km in thevertical. Withinthis areathe03, HNO3 and
the two CO2 channelseachcoverareasof about20km in horizontaland 2 km in verticalextent.
Thesefourchannelsarepositionedsymmetricallyaboutthe centerof the LIMSfield of viewasshown
in Figure4-8. TheH20 andNO2 channelscovera largerarea- about 30 km by 4 km.

The scan mirror sweeps the horizon image across the detector array over an angular distance of
+-6° centered about the optical axis. This axis is oriented at a nominal depression angle of "29 °

("40 km altitude point) during the mission. Two scan cycles are completed in the acquisition scan

model (Figure 4-9) during which the instrument senses the angular position of the peak radiance in

the narrow band CO 2 channel. This information is used to center the scan (at the 40 percent of peak

j 8mr

J CO2W J

lmr"_ 5rnr _J

J I HNO3 I
-t-

J CO 2 N J

J NO 2 J

1mr

4.1 mr

0.5mr

4.1 mr

0.5mr

4.1 mr

1 mr

EARTH
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Figure 4-8. LIMS Instantaneous Fields of View
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radiance point) for the adaptive scall mode which provides a scan +2 ° (up) and -1 o (down) about the

track point. The scan mirror rotates above the scan center by 8 degrees on every other scan cycle in
order to view the cold of space for calibration, and it rotates further to an angle of 30 degrees on the

same cycle to view in-flight calibration source.

The frame housing electronics unit (FEU in Figure 4-5) conditions radiance signals, controls the

scan drive mechanism, and contains the command relay and command logic assemblies. The inter-

face electronics unit (IEU in Figure 4-5) interacts with spacecraft systems and performs the functions

of signal processing, control, power conversion, and digitizing of electronic signals. The system block

diagram is shown in Figure 4-10. Thermal energy from the horizon focused onto the detector array

produces electrical signals from the detectors. These signals are synchronously detected, preampli-

fled, sampled, digitized, multiplexed, and routed to the spacecraft serial data stream for onboard re-

cording and subsequent telemetry transmission to a ground station. The spacecraft system provides

timing and command signals to LIMS for data reduction and command functions.

4.3.2 LIMS Location and Limb Viewing Geometry

The information presented in Figure 4-11 illustrates the principal axes of Nimbus 7 and the lo-

cation of the LIMS relative to these axes and the sensory ring (a). Also shown are associated positions

of the optical axis of the radiometer relative to the local horizontal (b) and to the spacecraft heading

(c).

As mentioned in Section 4.3.1, the FHA consists of two components; the cryogen cooler (SCP)

and radiometer optics (OMP). The SCP is located to the rear of the sensory ring and directly along the

roll axis of the satellite. The OMP is situated beneath the sensory ring with the attached SCP projec-

ted up through the ring on the inside. The LIMS line of sight is positioned 33.5 degrees to the left of

the negative roll axis (-X) in the X-Y plane and 29 degrees below the horizontal of the sensory ring.
This positioning is necessary to shield the radiometer from direct solar radiation and to position the

mirror scan some 30 to 40 km above the earth's horizon. The mirror in the OMP scans "up and
down" through a small angle just above the earth's surface.

It should be emphasized that LIMS views neither the local nadir nor in the orbital plane of the

spacecraft. As a result, the LIMS scan track, when projected to earth, is parallel and to the right of

the subpoint track relative to direction of flight. When the satellite is near the north pole, the LIMS

views across the pole. Near the south pole the LIMS views equatorward of the subpoint latitude po-

sition. With this geometric configuration, a greater density of observations are provided in the

northern hemisphere as compared to the southern hemisphere. Thus, LIMS data coverage extends
from about latitude 84°N to 64°S.

To better understand the LIMS coverage, computer portrayals of successive sub-tangent-point
tracks for both hemispheres are presented in Figures 4-12 and 4-13. Note in Figure 4-12 that suc-

cessive ascending and descending node tracks provide equal spacing in mid-latitudes of the Northern

Hemisphere, providing good spatial coverage in this geographical region of the earth.

4.3.3 LIMS Channel Characteristics

• The optical, noise equivalent radiance (NEN) and instantaneous field of view (IFOV) character-
istics of the six LIMS channels are given in Table 4-1.
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Figure 4-12• LIMS Sub-Tangent Point Tracks for the Northern Hemisphere

The noise performance was measured after completion of all environmental testing of the space-

craft. Channels 5 and 6, the wide (CO2W) and narrow (CO2N) carbon dioxide channels, provide
information on the temperature structure of the atmosphere. Channels 1 through 4 provide data on

the constituents NO2, H20, 03 , and HNO 3, respectively.

The location and width of each channel was optimized to provide the highest signal-to-

contaminant-gas-noise ratio. This optimization process was especially important for the NO 2

channel which is located in the center of a strong H20 band at 6.2/am. The region of strongest

atmospheric NO 2 emission was selected (e.g. 6.1/am) and the filter cut-off wave length was varied on
either side of the central emission to arrive at the l_est location. A similar procedure was followed for

the 9.6/am (O3), 6.2/am (H20), 11.3/am (HNO3), and 15/am (CO 2) channels. The spectral bandwidth
was set as wide as possible in order to maximize the energy collected• Because of this, it was possible
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Figure 4-13. LIMS Sub-Tangent Point Tracks for the Southern Hemisphere

to reduce the IFOV's in Channels 3 through 6 to near the diffraction limit thereby providing good

vertical resolution during a limb scan. The ozone spectral bandwidth was broadened over the LRIR

ozone channel in order to include the more weakly absorbing wings of the ozone band. When these

spectral regions are included, it becomes possible, in the absence of clouds, to measure the ozone pro-

file down to the ground level. The locations of the two CO 2 bands are not symmetrical about the 15
tim band center, but are shifted to the short wavelength (higher wavenumber) side of tl:e band. Be-

cause each band provides a limb radiance profile of different character, both are utilized in the process

of obtaining temperature inversion solutions. Good data can be obtained solely from the CO2W chan-
nel when statistical inversion techniques are applied to the limb radiance data. However, temperature

accuracy degrades somewhat.

86



{.,,'3

,..J

I 0

©

•_ Z
Z Z

o
N

o

>.

o_

o_

o_

r_

5
Z

0 0 0 0 0
0 0 0 0 0

E E E E E E

,-, "T ,-, "T _ 'T _

,,_ ,,_ _ ___ _- _-
" I I I "- I I

• • "_'o_ r--o ,,-,_ _

_ ."" I I r ,- I I I I

0 z 0

8?

Z
C'q

©

ORIGINAl' PAGE IS

OF POOR QUALITY

I
\

i



4.4 Calibration

The LIMS has undergone preflight calibrations in the laboratory under simulated flight environ-

ments to determine its geometric, spectral and system response to known magnitude and positions of

radiance sources. These calibration procedures were performed to an absolute accuracy approaching

one percent.

4.4.1 Preflight Calibration

The preflight calibrations included the following procedures:

• Calibrations of the encoder used to measure angular position of the plane mirror in scan

space

• Determination of the spectral response of each LIMS channel

• Determination of the field-of-view response of each LIMS channel in the scan plane

• Determination of the response of the LIMS system to a variable blackbody radiance source
for:

(a) eight points over the dynamic range of all channels

(b) three different environmental temperatures of the spacecraft

• Determination of the optical and radiometric characteristics of the in-flight calibration source

(IFC) for all LIMS channels.

The first procedure establishes where the instrument is viewing at any time in relative scan space.

The second and third procedures are important in determining what is being observed optically across

the band pass of each channel and how the limb radiance is being averaged spatially.

Primary calibration (the fourth procedure) determines the response of all LIMS channels to vary-

ing radiance sources over the expected dynamic range of limb radiances and for the range of possible

spacecraft temperatures anticipated during the mission. This calibration procedure establishes the

functional relationship (nearly linear) between instrument response and scene radiance. Once this

response is established for the operating environment of the satellite, it is assumed to hold through-
out the mission. A large scene radiance (the IFC source) and a zero scene radiance (space view) are

then used during flight to determine absolute radiance values.

The last procedure is critical to the absolute accuracy of the flight data. The IFC source pro-

vides a signal that establishes system response to a large (warm) radiance source. Absolute accuracy

is possible only if the characteristics of the IFC are known and its temperature is monitored accurately.

4.4.2 In-flight Calibration

During flight the scan mode automatically sequences the LIMS field of view to focus the detec-
tors on deep space and then on the in-flight calibration source operating at 310 K. Each position,

space and IFC, is viewed for two seconds. The sequence is repeated every second scan cycle. This

provides a two point instrument gain determination. The IFC becomes the tie point to the ground
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calibration. Assumingtheinstrumentlinearitycharacteristicsdonot change,theIFCandspacedata
coupledwith thegroundcalibrationcurvecanbeusedto removeanysmallresidualnonlinearityef-
fectsandprovideacontinuousupdatedabsolutecalibration.

4.5 LIMSOperationalModes

Theoperationalscanmodesof LIMSweredescribedin Section4.3.1. Theacquisitionmodewill
rarelybeusedundernormalcircumstances.Almostall datawill bemeasuredwith theinstrumentin
the adaptivescan,limb trackmode.

Duringacquisition,radiationfromthenarrowbandCO2channelispeakdetectedduringthe 12-
degreeacquisitionscan.Oncethelimb isacquired,thescanmirror subsystemswitchesto theadap-
tivescanmodeduringwhichtimelimb radianceprofilesarerecordedovera-+1.5degreescanabout
thelimbcenterline(anominal45km altitudein theatmosphere).Fromatangentpoint at theearth's
horizon,therangeof altitudeof theadaptivescanisbetween-45 km to 135km. Thelimbtrack po-
sitionisupdatedaftereachscanthroughthelimb.

Thesix LIMSchannelsmeasureradianceprofilessimultaneously.As shownpreviouslyin Sec-
tion 4-3, however,theNO2 datais offsetby about14km from the0 3 andHNO3, andthelatterby
about14km from the two CO2 channels,andsoon. Thesub-tangentpoint movesadistanceof
about22km in thetimeit takesfor thetop channel(H20) to scanacrossthesamealtitudepoint as
thebottom channel(NO2).

TheLIMSlifetimeispresentlyestimatedat sevenmonthsandis limitedby thelife of thesolid
cryogencooler. On-off sequencingcausesno reliabilityproblemsin theinstrumentbut canhavean
importanteffecton theusefulnessof LIMSresultsfor someinvestigations.Fourieranalysisof the
datato studywavepropagationmodesisoneof these.Datagapsup to onedaycanbetoleratedwith
anacceptablelossof information,but gapsnogreaterthanone-halfdayaremoredesirable.Random
ratherthanregularspacingsof thegapsispreferredin orderto avoidasamplingbias.Dataisrecord-
edcontinuouslywhileLIMSison. TheexpecteddailyLIMScoveragewasshownin Section4.3.1.
Thelatituderangefrom 64degreessouthto 84degreesnorth isscannedoneachorbit. Normaloper-
ationsprovideverticalconcentrationprofilesat aboutonedegreelatitudeintervalsalongeachtangent
point track.

4.6 DataProcessing,Products,andAvailability

4.6.1 DataProcessing

Theraw telemetrydata for LIMS are processed at GSFC and written on computer-compatible

tapes. These tapes are mailed to the National Center for Atmospheric Research (NCAR) in Boulder,

Colorado for processing into archival tape products of radiance observations and derived atmospheric

variables as listed in Section 4.6.2 and illustrated in Figure 4-14. These tapes are returned to IPD at

GSFC. IPD copies some tapes and sends them to NET users. IPD uses other tapes as input to gene-

rate the LIMS microfilm displays. All original tapes and microfilms are then sent to NSSDC for ar-

chiving. NSSDC makes copies of these products for users.

4.6.2 Tape Products

The following tapes are produced by NCAR, used by IPD, and then sent to the NSSDC for ar-

chiving. Brief descriptions of these tapes are as follows:
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Figure 4-14. LIMS Data Processing Flow at NCAR
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• RAT (Radiance Archival Tape)

These contain the most elementary and complete form of the experimental observations

consisting of all useful radiance scans plus time and scan angle references, spacecraft location

and attitude, solar location, and sensor calibration.

• IPAT (Inverted Profile Archival Tape)

These contain the most useful form of the basic data on the RAT's. These consist of param-

eter profiles of ozone, water vapor, nitric acid, and nitrogen dioxide at selected standard

latitudes. The radiance profiles used to make parameter profiles are also given. All param-

eter profiles are given as a function of pressure at a vertical resolution of 1.5 km.

• MAT (Map ArchivalTape)

These contain daily world map grids (64°S to 84°N) of harmonic coefficients for each

parameter at standard pressure levels. Coefficients are derived from the data on the IPAT's.

Data are organized and averaged into 38 four-degree latitude bands symmetric about the

equator. Data for the daily maps are interpolated to synoptic times (0000 GMT and 1200

GMT).

• SMAT (Stacked Map Archival Tape)

These contain one month and three month world map grid averages of the daily maps on the
MAT's. The data format is almost identical to the MAT.

• CAT (Cross-section Archival Tape)

These contain north-to-south grid-point cross-section depictions of all parameters compiled

in a cross section format. Data are latitudinally averaged over selected longitudinal sections

(several orbits in a row) and for each day. The tapes also contain orbital values of cloudtop

pressure values referenced bylatitude. All data values are derived from processing the
IPAT'S.

• SCAT (Summary Cross-section Archival Tape)

These contain the same parameters as on the CAT's, but averaged over periods of one month
and three months. Data format is almost identical to the CAT.

• MATRIX-M (Map Data Matrix Tape)

These contain one northern and one southern hemisphere polar stereographic map (0 ° -

90 °) and one Mercator map (-+32 °) record of countour values for each parameter for each

time period to be on microfilm map displays.

MATRIX-C (Cross-section Data Matrix Tape)

These contain cross-section records of contour values (64°S - 84°N) for each parameter to

be on microfilm as a cross-section display. Each record also contains all necessary reference

and title information needed for annotation of each of these displays. It also contains all

necessary reference and title information needed for annotation of each display.
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• PROFILE-R (Radiance Profile Tape)

These contain arrays of radiance versus scan angle selected from the RAT's for various time

periods throughout the lifetime of the experiment. These arrays are used to make radiance

versus scan angle profile displays on microfilm. Each tape record also contains all necessary
reference and title information for complete annotation of each of these displays.

• PROFILE-I (Inverted Profiles and Radiance Tape)

These contain arrays of matching parameter and corrected radiance profiles as a function of

pressure selected from the IPAT's. Each record also contains all necessary reference and title

information for complete annotation of each parameter and radiance profile display.

The form and content of each of these tapes is specified in a tape specification document for

each tape type. The appropriate documents will accompany a tape shipment to a user. See Section
1.5 of this document for details.

4.6.3 Display Products

The LIMS data are displayed on 84 different map sets, 21 different cross section sets, 2 profile
sets, and 1 plot. Six parameters are mapped: temperature, ozone, nitrogen dioxide, water vapor,

nitric acid, and geopotential height. Each parameter is mapped at 14 pressure levels for each day,

month, and three month time period. (See Figures 4-15 and 4-16 for map display examples.) The

same six parameters are displayed on 64°S to 84°N cross sections for 60 degree longitude zones each
day (Figure 4-17) plus the 64°S to 84°N latitudinal averages for each day, each month, and every

three months (Figure 4-18). Periodically, selected LIMS values are displayed as profiles of radiances

(Figure 4-19). Each profile is for a 24-second scan period. Routinely (approximately 64 displays

per orbit), selected radiance profiles are inverted and displayed as parameter profiles of temperature,

ozone, nitrogen dioxide, nitric acid, and water vapor (Figure 4-20). Plots of cloudtop heights
(along the tangent point tracks) are generated for each orbit, and seven orbital plots are then pro-

duced on one display (Figure 4-21 ).

Table 4-2 lists the titles of all LIMS microfilm displays and the corresponding film specification

number for each. Most parameters are produced at more than one time scale as Table 4-2 shows. In-

terpreting the fourth digit from the left in each specification number gives the frequency of produc-
tion of the parameter listed in the title:

XXXOXX = produced orbitally, or more often,

XXX1XX = produced every day,

XXX7XX = produced every month, and

XXX8XX = produced every three months.

All map displays contain one north and one south polar stereographic projection (pole to equa-
tor for each) and one Mercator projection (to _+32°). Each map contains contoured data as specified

in the display title. Immediately beneath each Mercator map is contouring information giving the

contour units, interval between contour lines, and the maximum and minimum value contoured. All

map displays contain an indicator of the quantity of data within a display. On the one day displays

there is a "missing orbits per day" code specifying how many orbits of data are missing from that

92



W
0

../'..,,__
/,.-......_..,o:_
/ ""-./ _"/.. ..:.X_

I.-- '_" o

Oz_
0 a_ :at =t 0

,,......,....,.
,_ ,.::'" ....:.

_--,,k:._" "
:':::::-':.::::"-....=:F:'-._-."_'.'.'._"'"I

_"v..."d / ..... "l..........
.....-'." :_ =-"..'_":""u"",,,.,,_._.............._'_::.../ /

0

o x

n,.. a.u

_x

oO=_1
w X
_" X
n
_ X

X

Z

..J

0

0

= V--

_ °=_ 0

0

0
I--

._,

I--

--;=
_ m

II Z

©

©

E
o

o

°_

"T

93



0

o

o

©

B
o

o

I

94



O" I I lllllj | i lJ.... U i I vjlvvlj ! i _

Z

.J

Q_

F-

Z

.J

¢

U

01:

_1

_J

W

0
+-

¢J

G

X
O

r,

0

, . ,I..J

0 O

I | I | I

l

m

,, ,h...I ,, h,,,I I i

0 0 0 0

w-4

l I I I I I I _

0 C. 0 0 IS1
=1" O_ r,I ,,d

95

O_ O

0
"_ £o

0r_

(N

-_ ou.
(/) O

• I-_ O

"1 O (.0

.=, <

o°
0
o

I--

-J

O
(j hi

J O_
O.

(f)

_" z
ua _ ,_o

,,,- m>_
5-" Z

z O _

_ I,-.- z _

x
0

z

_e

O z

I--

3_

I .j=

ORtGtH/ pAGE tS

o

0

L,

0
xo

o

LT..

>.,

0

==
©

E

0
L,

.u

,-1

"T



_m
zl
_m
_m

_(

_m

_m
_m
Xl
_m

_m

_m

n,.!

_--m
zl
_m

I--m

elm

I,.ml

_,.11

I.m!

II_ 0 0

_._ _._ o° _
' ' '1 I , ,,r,,,i , m,l,,'l , ,

z

z

q

. ,.I .... I , ,,t.,,,_ .,.t.,.I , ,, _;

0 0 0 0 0 0 u:_

_,. 40 _ =1" {_ _ ,,-4
..I

=1.

I--
,4(
--I

g6

a r, _i

_L

I-- _0¢

-- ¢"_1

-= _-_c

$ (
¢

el: ¢

a. I.

Z
m
_J

0

w
m.l

0

_'z

¢.11 o

_ F--_

_E .-I 0

_J_

P-

N
0

..JZ

Z

@

0

e-

0

©

e-
©

@

e-,
o

0

r..)

"T



1.5j

S 1.01
C

A 0.5l
N

A 0.0]
N
G
k -0.51
E
S

-1.0l

-1.51

1.5

-1.5

1.5

-1.5

1.5

15

250

m 12-'bit words --

(ABSCISSA RADIANCE VALUES)

C02N C02W 03 NO2

RADIANCE PROFILES FOR SCAN TIHE 162205 -(NIGHT/DOWN}

HN03 H20

TANG, PT. 18.2N 106.5W

(ABSCISSA RADIANCE VALUES)
C02N C02W 03 NO2

RADIANCE PROFILES FOR SCAN TIME 162_05 -(NIGHT/UP)

HN03 H20

TANG. PT. 2_.8N 107.6W

RADIANCES IH W'H-2.STER-I.(cH-1) -1

(ABSCISSARADIANCE VALUES)

C02N C02W 03 NO2 HN03

RADIANCE PROFILES FOR SCAN TIHE 162605 -(NIGHT/DOWN) TANG. PT.

H20

31,_N 108.7W

1.5

1.0

0.5

0.0

3O
-0.5 KH

REF
-1.0

I-1.5

1.5

-1.5

1.5

-1.5

- 1.5

i -1.5
(ABSCISSA RADIANCE VALUES)

RADIANCE PROFILES FOR SCAN TIME 162805 -(NIGHT/UP) TANG. PT. 38.9N 109.%/

PROFILES OF RADIANCE VS SCAN ANGLE 12 AUG 80
LIMS ORBIT 09992

NIMBUS 7 TO0000 ALGO 000 F505051ECO00000

Figure 4-19. LIMS Microtiim Profile Display Format of Radiances versus Scan Angle
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Table 4-2

Titles and Film Specification Numbers for LIMS
Microfilm Products

Film

Spec
Number

563101

563701

563801

563102

563702

563802

563103

563703

563803

563104

563704

563804

563105

563705

563805

563106

563706

563806

564030

564130

564730

564830

564031

564131

564731

564831

564032

Film Product Title

TEMPERATURE (K) AT XXX*MB

MAPS

OZONE (0 3) AT XXX MB

NITROGEN DIOXIDE (NO 2) AT XXX MB

WATER VAPOR (H20) AT XXX MB

NITRIC ACID (HNO 3) AT XXX MB

GEOPOTENTIAL HEIGHT (h) AT XXX MB

CROSS SECTIONS

LATITUDINAL CROSS SECTIONS OF TEMPERATURE (T) AND OZONE (0 3) VS
PRESSURE

LATITUDINAL CROSS SECTIONS OF NITROGEN DIOXIDE (NO 2) AND WATER

VAPOR (H20) VS PRESSURE

LATITUDINAL CROSS SECTIONS OF NITRIC ACID (HNO 3) AND GEOPOTENTIAL

HEIGHT (h) VS PRESSURE
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Film
Spec

Number
564132
564732
564832

565050
565051

567080

Table4-2 (Continued)

Film ProductTitle

PROFILES

PARAMETER AND RADIANCE PROFILES

PROFILES OF RADIANCES VS SCAN ANGLE

PLOTS

CLOUD TOP HEIGHT PLOTS

*Each mapped parameter is contoured and displayed at 14 pressure levels. These are: 400, 300, 200, 100, 70, 50,
30, 10, 5, 2, 1, 0.4, 0.2, and 0.i millibars.

day's input to the map (See Figure 4-15). On the one month and three month maps (Figure 4-16)
tbere is an "on--off cycle" scale specifying the days during the display period when the instrument

was on and off. If a day is "filled in" the instrument was on, the data was collected, interpreted, and
used in the contouring. If a day is not filled in, the instrument was either off or the data was unus-
able for some reason.

The two polar stereographic maps on the one day displays (Figure 4-15 is an example) contain
"dot tracks" with each dot representing a tangent point data value location used in the construction
of the contours on the maps.

Figure 4-17 is an example of a longitudinal zone (60 °) cross section display constructed with data

from two to four consecutive orbits. Two parameters are on each display; one cross section for each

parameter. As the display indicates, the orbits used in constructing the cross section are interpolated
to a reference GMT and a reference longitude. Data are referenced vertically by pressure and standard

atmosphere altitudes, and horizontally by latitudes. Figure 4--18 is an example of the one day, one

month, and three month cross section displays. The format is identical to Figure 4-17 except that
these longer-period displays have no reference GMT and reference longitude.

Figure 4-19 illustrates the format for the radiance versus scan angle displays. On each set of pro-
files the data are referenced vertically by the LIMS instrument scan angle and the location of the 30

kilometer altitude location, and are located horizontally by radiances. Four profile sets are presented
on each display.

Figure 4-20 illustrates the format for the parameter and radiance profile sets. Data values are

referenced vertically by pressure and standard atmosphere altitudes, and horizontally by the param-
eter values as shown. (The '_rHKNS" parameter, at the left, provides the calculated distances in the

atmosphere, in tenths of a kilometer, between two predefined pressure limits - as shown by the hori-
zontal lines over to the pressure scale.)
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Figure 4-21 illustrates the format for the cloudtop height plots. Each plot shows the pressure

and corresponding height of the tops of the clouds above 300 mb - as determined from processing

LIMS data. Where thetops are below 300 mb the plotted line drops below the lower limit of the pres-
sure scale and is not shown. Data are referenced vertically by pressure and standard atmosphere alti-

tudes, and horizontally by eleven tangent point latitude-longitude locations, plus eleven satellite

subpoint GMT's corresponding to the tangent point locations.

Title and reference information at the bottom of all displays is mostly self-explanatory. The

right half of the last line, however, requires explanation. These items are: the physical tape. number
the data is stored on (TXXXXX), the algorithm reference number used in processing the data (ALGO

XXX), the film specification number (F56XXXX), the project data format code (EA, EB, EC, or ED),
and the film frame number (XXXXXX).

4.6.4 Data Availability

The LIMS experimental data, consisting of the magnetic tapes described in Section 4.6.2 and

the 16 mm microfilm displays listed and illustrated in Section 4.6.3, are archived at the NSSDC. The

tape data are also archived at NCAR for easy access to universities having computer ties to NCAR.

All tape products except the RAT are in a form for direct use in scientific investigations of the

stratosphere and mesosphere. The RAT product is available for algorithm research and other uses
but such studies can only be carried out at large computing centers due to the large number of tapes

involved. The RAT products will be archived first followed by the other data. It is anticipated that
the first month of RAT data will be archived about six months after launch.

Users requesting LIMS data from NSSDC should read Section 1.5 of this document for general

tape and film ordering information.

4.7 Planned Investigations and Data Applications

The LIMS NET has conceived a number of investigations for both validation of the data set prior

to public archiving and for demonstration of initial data use in studying the stratosphere.

The validation investigations include evaluation of the accuracy and precision of the LIMS orbi-

tal measurements, study of the consistency of the LIMS measured temperature, 03, HNO3, NO2,

and H20 with alternate techniques, and comparison of temperature and geopotential maps with
NMC data. Alternative inversion methods will also be tested against the standard LIMS approach to

ensure that the best possible data are achieved. Cloud information algorithms will be validated and

tuned to allow for proper removal or consideration of cloud effects in all channels. Comparisons
will also be made with other experiments on Nimbus 7 and other satellites. For example, LIMS and

SAMS temperature and H20 maps and cross sections will be compared, LIMS ozone will be compar-
ed with SBUV/TOMS and SAGE results, and all LIMS results will be correlated with SAM II and
SAGE aerosol results to ensure that effects due to thin cirrus clouds and aerosols are not overlooked

in the archived data. These investigations should provide the required knowledge and confidence in

the LIMS data and a proper assessment of data quality prior to release of the results to the general

science community.

A number of atmospheric research investigations are planned by LIMS NET members to show

the initial utility of the data. These include the following:
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• Study of the stratospheric ozone - nitrogen chemistry using SAMS and LIMS data

• Study of atmospheric dynamics, including propagation of planetary waves, detection and

determination of properties for equatorial waves, five-day waves, stratopause instabilities

and high frequency waves

• Correlation of temperature and ozone

• Study of LIMSdata correlations with solar variability and other processes

• Study of transports and budgets of chemical constituents, heat, momentum,

energy and potential vorticity

• Preparation of atmosphere climatology

• Study of diurnal variations in trace constituents and temperature

• Use of constituent profiles to study the radiative budget of the middle atmosphere

• Use of LIMS data in the lower stratosphere to study troposphere-stratosphere exchange

• Ozone secondary maxima studies

• Interpret and map global distribution of background cloud radiance

• Study to improve transmittances

• Study of improved inversion algorithms

These investigations will demonstrate the scope and usefulness of the LIMS data set and should

stimulate and guide further studies of the stratosphere and mesosphere.
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SECTION 5

STRATOSPHERIC AEROSOL MEASUREMENT (SAM II) EXPERIMENT

by

M. P. McCormick, L. E. Mauldin, III, L. R. McMasters, and W. P. Chu
National Aeronautics and Space Administration

Langley Research Center, Hampton, Virginia 23665

and

T. Swissler

Systems and Applied Sciences
17 Research Drive

Hampton, Virginia 23666

5.1 Introduction

The Stratospheric Aerosol Measurement (SAM II) experiment provides the vertical distribution

of stratospheric aerosols in the polar regions of both hemispheres. SAM II is a one-spectral channel

sun photometer, centered at 1.0 tam, which views a small portion of the sun through the earth's at-

mosphere during spacecraft sunrise and sunset as shown in Figure 5-1. The time-dependent radiance

thus measured each sunrise and sunset is combined with the spacecraft ephemeris data and local at-

mospheric density profile, and then numerically inverted to yield a one-kilometer height-resolved

vertical profile of aerosol extinction above the earth tangent point. The Nimbus 7 orbit yields tan-

gent points in the 64 degree to 80 degree latitude band in both hemispheres as shown in Figures 5-1
and 5-2.

/

The data SAM II provides are from the inaccessible polar regions where little aerosol data exist.

Since aerosols have the potential to modify climate significantly and their microphysical and chemi-
cal interactions enter into a number of important environmental processes, these SAM II data provide

valuable and needed information to aid in these studies. In addition, the effect of aerosols on some
remote sensor techniques must be understood for their unique interpretation.

5.2 Scientific Objectives

The scientific objective of the SAM II experiment is to produce a baseline data set on strato-
spheric aerosols in high-latitude regions with one-kilometer vertical resolution. This set of aerosol

data can be used for investigations in the following areas:

• Radiative transfer and climatic studies

• Aerosol transport, sources and sinks in the stratosphere

• Seasonal variations and sudden warning phenomena

• Volcanic injection phenomena
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Mesosphericaerosols,noctilucentandnacreousclouds,andthin cirruscloudsnearthe tropo-
pausewill alsobedetectedwhentheiroptical thicknessissufficientlylarge.Thesedataareof usein
all four areaslistedabove,aswellasinwatervaporstudies.

5.3 ExperimentConcept

Theexperimentalapproachfor SAMII issolaroccultationby theearth'satmosphere.Theradi-
ometerwill trackthesolardiskduringeachspacecraftsunriseor sunseteventin orderto producean
atmosphericextinctionprofileat the 1.0tam wavelength down to an atmospheric vertical altitude of

below 10 km. The data acquisition mode for the SAM II radiometer is illustrated in Figure 5-3. The
two solid lines denote respectively the image positions of the top and bottom of the solar disk during

a sunset event as viewed from the spacecraft platform. The gradual shrinking of the vertical sun shape

image is due to atmospheric refraction effects. The left ordinate denotes relative angle measured

from the spacecraft coordinate system in units of arc minute, while the right ordinate denotes corre-

sponding vertical tangent altitude for sun ray in kilometers. The horizontal abscissa denotes event
time in seconds. The zig-zag dashed line in the figure represents a typical data-taking sequence. The

radiometer vertically scans the solar disk up and down with respect to the earth's horizon. The nom-

inal scan rate is 15 arc minutes per second. For a sunrise event, the data-taking mode is similar, with

the time sequence in reverse. The radiometric data is sampled at a rate of 50 samples per second and

is digitized to ten-bit accuracy. The instrument field of view of approximately 0.6 arc minute pro-
duces a vertical resolution better than one kilometer.

The measured irradiance from the SAM II instrument is related to atmospheric optical proper-

ties through the following equation:

H(t) = f F(O,_) S(O,¢,t, exp [_(0)] d_ (1,

where H(t) is the measured irradiance at time t, S(O,¢,t) is the extraterrestrial solar radiance profile at
time t corrected for atmospheric refraction effects, F(O,$) is the instrumental field--of--view function,

and r(O) is the optical thickness of the atmosphere for view angle 0. Since each view angle 0 corre-

sponds uniquely to an atmospheric tangent height hT, the optical thickness r(h T) can be related to
atmospheric extinction properties through the following equation:

= f [13a(h) +/3ND(h)] dp(h) (2)r(hT)

where j3a(h) is the aerosol particulate extinction versus altitude profile,/3ND(h) is neutral density ver-
sus altitude profile (Rayleigh scattering), and p(h) is the path length through the atmosphere. The

integral is evaluated from the spacecraft position to the sun.

The retrieval of aerosol extinction profiles from SAM II data is. accomplished through the fol-

lowing two steps. First, the measured irradiance data are reduced together with spacecraft ephemeris

data into a single prof'fle of limb optical thickness, r(hT), as a function of tangent height, hT, in the

atmosphere. The high altitude solar scan profiles are used as a calibrated solar limb profile in this

process. The second step is then to subtract the estimated neutral density contribution along each

limb path to obtain the aerosol extinction profile. Dividing the atmosphere into N homogeneous

layers, .the integral equation can be reduced to a system of linear equations:

N

rai = ._. Oij 13aj (3)
J=l
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where r a is the measured limb optical thickness profile for aerosols, Oil is the sunray's path length in

the jth layer with its tangent height at ith layer, and/_aj is the averaged aerosol extinction coefficient
"thfor the j layer. Equation (3) can be inverted to find the values of flaj with different inversion meth-

ods such as the constrained smoothing method (Twomey) or an iterative approach (Chahine).

Figure 5-4 illustrates inversion results from synthetic data representative of background aerosol

condition with typical instrument errors and a three percent uncertainty in neutral density. A total

of ten computer simulations of the complete experimental event were performed and the subsequent

inverted solutions analyzed. The maximum and minimum deviation of the ten inverted results are

shown by error bars. The true profile is shown as a solid line. The inversion results indicate that aer-
osol layers between 10 to 20 km can be retrieved with an accuracy of about 10 percent for the

assumed stratospheric aerosol conditions and uncertainty in neutral density profile.

5.4 SAM II Instrument

5.4.1 Physical Description

A diagram of the instrument is shown in Figure 5-5. The instrument weighs 17 kg, and the over-

all envelope is 36 cm by 20 cm by 51 cm. A cross section of the instrument is shown in Figure 5-6.

Solar input radiation is reflected from the scan mirror into the Cassegrainian telescope, and a

solar image is formed at the slit plate. The slit plate contains two solar edge sensing detectors loca-
ted on either side of the science detector aperture. Radiation passing through the science aperture is

collected with a field lens, passes through an interference filter for wavelength discrimination, and fi-

nally is measured by a silicon photodiode detector.

The Instantaneous Field of View (IFOV) is controlled by the science aperture, and out-of-field

rejection is accomplished by an optical baffling system (an image of the telescope secondary mirror
is formed on the detector) and a mechanical baffle tube mounted to the telescope primary mirror.

The scan mirror and telescope primary and secondary mirrors have silver coatings with an overcoat

protective layer. The secondary mirror is mounted to a quartz entrance window which is coated to

reject wavelengths shorter than 0.8/am for thermal control and for providing wavelength discrimina-

tion for the solar edge sensing detectors.

The entire optical/detector system is contained in the azimuth gimbal. This gimbal is supported

by ball bearings, a duplex pair at the bottom, and a single bearing at the top. Electrical power and
data are transferred across the gimbal by two flexible ribbon cables mounted on each end of the gim-

bal shaft. Also mounted to the azimuth gimbal are two radiation balancing sun sensors to align the

gimbal to the radiometric centroid of the sun, and a sun presence sensor.

The depression gimbal is contained within the azimuth gimbal, and consists of the scan mirror
supported by flex pivots, a DC torque motor, a rotary variable differential transformer (RVDT), and

the gimbal support structure.

The thermal control system is completely passive. Thermal insulation covers the instrument ex-
terior surfaces to limit the radiative heat flow to outer space. The instrument is thermally tied to the

observatory structure so that its base temperature will be at or near that of the observatory. The

mechanical, optical, and electrical systems have been designed to be relatively insensitive to tempera-
ture within the -5°C to 45°C design range. The silicon science detector, however, is temperature
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sensitive and its thermal design has concentrated on keeping it stable to the order of 0. I°C during a

data-taking period of approximately 2.5 minutes.

The instrument contains 20 printed circuit (PC) boards mounted in a rectangular box, and these

provide electronics for signal conditioning, pulse code modulation (PCM) encoding, timing and con-
trol, command, azimuth servo, depression servo, power conditioning, and housekeeping functions.

5.4.2 Functional Description

A block diagram of the instrument is shown in Figure 5-7. The SAM II instrument is designed

to operate twice an orbit, once during observatory sunrise and once during sunset. Two data com-
mands are stored in the spacecraft memory, one for sunrise and one for sunset. When these commands

are activated the instrument automatically sequences through three modes. The three modes are de-
scribed below.

5.4.2.1 Slew Mode

Execution of a data command initiates a timed slew mode where the azimuth gimbal slews at
five degrees per second to the expected sun position (angle) stored in the azimuth register. The azi-

muth register contains a stored potentiometer position that is initially loaded from ground commands

and is automatically updated to the proper position after the initial sun acquisition during a sunset

event. This register is automatically updated during each sunset event to the proper position for the
next sunrise and sunset event.

The azimuth position in the register is changed to an analog level in a D/A converter and com-

pared to the actual position as indicated by the azimuth potentiometer. The difference in these sig-

nals is used as an error signal which is applied to the servo gain and compensation network and then
to the motor driver which drives the motor until the error is nulled. A rate tachometer is used to limit

the slew motion to 5 degrees per second. At the end of this timed mode, the azimuth gimbal has a-

ligned itself to within 5 degrees of the radiometric centroid of the sun, and the instrument sequences
to the pointing mode.

5.4.2.2 Pointing Mode

When the slew mode timer times out, the azimuth gimbal control is switched to the azimuth sun

sensors. These two radiation balancing sensors generate a linear error signal about the radiometric

centroid of the sun. When control is switched to these sensors, the azimuth gimbal is aligned to the
radiometric centroid of the sun within 1 arc minute, and remains aligned to within 1 arc minute for

the remainder of the data-taking event. When these sun sensors have reached null and the sun pres-

ence sensor output is above a set threshold, the instrument sequences to the scan mode.

5.4.2.3 Scan Mode

In the scan mode, which is also a timed mode, the depression servo drives the scan mirror in a

linear scan cycle and science data are taken of solar intensity. The initial mirror scan rate is 180 arc

minutes per second (line of sight). During this scan the solar disk image is driven toward the slit plate
in the focal plane of the telescope. A diagram of the solar image scanning across the slit plate is shown

in Figure 5-8. When both leading and trailing edges of the sun have passed the science aperture, the
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depression servo switches to a 15-arc minutes per second (line-of-sight) scan rate. In addition, when

the trailing edge of the sun drops off the science aperture, the solar image scans an additional five arc
minutes and then the mirror scan direction reverses. In the slow scan mode the mirror scan direction

is reversed each time the trailing solar edge has scanned approximately five arc minutes past the center
of the science aperture.

In the scan mode the scan mirror is controlled by comparing an electrically generated scan wave-

form to the mirror position indicated by the RVDT. The scan waveform is a linear ramp that changes

direction as necessary to make the solar image scan back and forth across the science aperture. The
turnaround signal is generated when the science detector output drops below a threshold value which

is set at approximately one percent of full-scale solar intensity. The RVDT generates an accurate

mirror position signal. The error between this signal and the scan waveform is processed by the de-
pression servo gain and compensation network and the motor driver network. The limited angle

brushless DC motor drives the scan mirror on its flex pivot mounts to null the error. The scan mode

continues for 144 seconds and then the instrument automatically sequences off.

5.4.3 Data System

The instrument data is composed of one science channel, 10 supporting measurements, 25 ana-
log housekeeping measurements, and 15 status checks. The science channel contains the science de-

tector output and is multiplexed into a 10-bit A/D converter at a 50-samples per second rate. A
submultiplexer combines the ten supporting measurements with the science data to form a serial data

stream. The observatory provides clock and gating pulses to alternately dump this data from two

storage buffers into the observatory VIP digital A data system storage matrix for later transmission.

Although all ten supporting measurements are used in the inversion of the science data, the most

important of these are TON , TOFF, and AT. TON , TOFF, and AT are time measurements of leading
and trailing solar edge crossings on edge sensing detectors A and B, as depicted in Figure 5-8. Using

these data in conjunction with the observatory data system, one can determine the GMT crossing of

each edge for each scan, the angular width of the sun for each scan, and the scan rate at the beginning

and end of each scan. The remaining supporting measurements include the azimuth register position,
azimuth gimbal position, mode, a sync word, and three precision calibrate voltages for the science de-
tector A/D converter.

The 25 analog outputs are housekeeping measurements of key temperatures, key voltages, key

currents, azimuth and depression servo errors, RVDT output, science detector output, sun presence
detector output, and clock status. These analog measurements are sent to the observatory VIP ana-
log data system.

In addition, the instrument contains 15 binary outputs that indicate operating mode status and

command status. These outputs are sent to the observatory VIP digital B data system.

5.4.4 Viewing Geometry and Instantaneous Field of View (IFOV)

The SAM II IFOV is circular, 0.61 arc minutes in diameter, centered about the instrument op-

tical axis. The viewing geometry, with respect to the observatory coordinate system, is shown in Fig-
ure 5-9 (a) and 5-9 (b). The instrument axes X, Y, and Z are parallel to the observatory X, Y, and Z

axes, respectively. The azimuth gimbal axis of rotation is about the Z axis. The IFOV can be rotated

210 degrees, centered about the +_ axis. Sunrise events occur within + 15 degrees of the +X axis, and
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sunseteventsoccur within -+15 degrees of the X"axis. The exact location of sunrise and sunset de-

pends on the insertion beta angle of the satellite, satellite drift during the mission, and the analemma
function.

When the scan mirror is at the flex pivot null position, the instrument optical fine of sight is

28.25 degrees in depression angle from the local horizontal (observatory XY plane). The line--of-
sight depression scan is +5 degrees about flex pivot null.

5.4.5 Performance Characteristics

The SAM II spectral bandpass, 0.98/am to 1.02 #m, is determined by the combination of the

bandpassofthe front entrance window, the interference filter, and the silicon photodiode spectral
sensitivity. The bandpass characteristics are shown in Figure 5-10. The instrument is calibrated such

that a full-scale solar intensity (sun viewed by SAM II above earth's atmosphere) measurement is set

at 900 counts on the 1,023-count scale. The accuracy of a measurement is 0.3 percent full-scale in-
tensity (2.7 counts).

5.4.6 Calibration

The calibration technique used is often called the Langley Technique. In using this technique to

calculate zero air mass solar intensity, one measures intensity of the sun over a several-hour period on
a clear, optically stable day. By using the calendar day and the latitude and longitude of the measure-

ment location, one can calculate a table of air mass versus time of day. Then by noting the time of

day on each solar intensity reading, one can plot intensity (detector op-amp output voltage) versus
air mass. From the Lambert-Bouguer relationship,

I = Io e-kT (1)

where I is solar intensity at air mass T, Io is unattenuated solar intensity (zero air mass) and k a con-
stant (equal to 1 air mass). Then

log I = log Io - kT (2)

This equation defines a straight line with log Io as the ordinate intercept.

Thus, intensity data were taken over a several-hour period, a least squares straight line was fit to
the data, and the intercept (Io) was determined. Finally, the op-amp gain resistor was set so that the

op-amp output voltage for Io corresponded to 900 counts.

The confidence level of this calibration is +5 percent. No attempt is made to correlate this signal
level to an absolute intensity since this is not required for science data inversion.

The data for SAM II are self-calibrating since, in the science inversion process, each data point is

normalized to the full-scale reading during the same event. Therefore, slight variations of the full-

scale reading during the course of the mission do not seriously affect inversion accuracy. Linearity of
the data system, however, must be maintained. The detector/op--amp combination is inherently an

extremely stable device, and its linearity is not expected to change during the mission. Three preci-

sion calibrate voltages are injected immediately after the op-amp once every 16 seconds to check the
linearity of the remainder of the data system.
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5.5 Data Validation

Before the SAM II data products (vertical profiles of aerosol extinction and number density as a

function of latitude and longitude) are archived, the data will be validated by comparisons with other

measurements made by sensors of appropriate accuracy, resolution, and reliability. Inversions using a

typical SAM II inversion algorithm, simulated radiance data, and simulated errors of the magnitude

expected for a typical measurement cycle indicate that ground truth measurements for SAM II data

validation must provide a vertical profile of an aerosol parameter from cloud tops to heights of 40 km
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with averticalresolutionof 1 km or better and with a measurement accuracy of approximately ten

percent over the height range where aerosol 1.0/am extinction exceeds about 50 percent of molecular
1.0/am extinction.

The sensors discussed in Sections 5.5.1 through 5.5.4 were selected for use in validating the
SAM II data.

5.5.1 Airborne Lidar

An airborne lidar system was developed to provide exact ground point comparison with SAM II

vertical profiles and to check aerosol horizontal homogeneity along the SAM II viewing path since

this homogeneity is assumed in the SAM II inversion algorithms. The lidar system will provide pro-
files of aerosol scattering ratios at 0.69/am with a vertical resolution of better than 1 km and an un-

certainty in aerosol backscattering coefficients of approximately ten percent at the aerosol peak
height. The uncertainty in the conversion of the lidar-measured aerosol backscattering coefficients

to aerosol 1.0/am extinction coefficients (by using an assumed refractive index and aerosol size distri-

bution) is about 20 percent. (Other aerosol parameters will be measured simultaneously which may
allow this uncertainty to be reduced.)

5.5.2 Dustsondes

Dustsondes (balloon-borne optical particle counters) were selected for comparison with the

SAM II data because of their extensive use and acceptance by the scientific community. The dust-

sondes provide number density profiles of aerosols with radii greater than 0.15 and 0.25/am. The
vertical resolution is better than 1 km and the uncertainty in number density below 25 km is about

8 percent. The uncertainty in the conversion of aerosol number density to aerosol 1.0/am extinc-
tion coefficient (by using an assumed refractive index and a two-parameter size distribution fitted to

the two-channel dustsonde data) is about 25 percent. (Other aerosol parameters will be measured

simultaneously which may allow this uncertainty to be reduced.)

5.5.3 Balloon-borne Sun Photometer

A balloon-borne sun photometer which views the total solar disc will be used for comparison
with the SAM II data because it provides the only other direct measurement of the aerosol 1.0/am
extinction. The vertical resolution will be better than 1 km.

5.5.4 Airborne Polar Nephelometer and Impactors

Optical properties of the stratospheric aerosol, including size distribution and complex refractive

index, must be known to convert the SAM II extinction profiles to profiles of aerosol number density
and to convert the various ground truth measurements to 1.0/am extinction profiles. The airborne

polar nephelometer and impactor measurements are desired to supplyinformation on these optical

properties. But, since they do not very easily yield vertical profile information, these measurements
will not be made unless such flights under other research programs can be coordinated with the SAM
II program.

5.5.5 Ground Truth Experiments

Four ground truth experiments will be conducted using the selected sensors to validate the SAM

II data. The first experiment, conducted at Laramie, Wyoming, in July 1978, provided a test for the
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newly developed sensors, and established multisensor and multiplatform coordination procedures. It

also tested data reduction and comparison techniques. Following this practice comparative experi-

ment, a ground truth experiment will be conducted during November 1978 at Sondre Stromfjord,

Greenland. (This site was selected because of the SAM II high latitude coverage, favorable meteoro-

logical conditions, and available logistics support that will be required for each sensor.) This experi-

ment will include the airborne lidar, the balloon sun photometer, dustsondes, rawinsondes, and

possibly the airborne polar nephelometer and impactors.

The third ground truth experiment using only the airborne lidar will be conducted in December
1978 over the Antarctic Palmer Peninsula. This site was selected for validation of the southern hemi-

sphere data since all northern hemisphere measurements are sunset measurements and all southern

hemisphere measurements are sunrise measurements due to the nature of the spacecraft orbit and
SAM II field of view.

The fourth ground truth experiment will be conducted during May 1979 at Sondre Stromt]ord,

Greenland. This site was selected for a repeat experiment to ensure the SAM II was still operating

properly and because it provided a unique opportunity for comparison of the SAM II data with the

Stratospheric Aerosol and Gas Experiment (SAGE) aerosol 1.0 tam extinction measurement. This ex-
periment will include the airborne lidar, the balloon sun photometer, dustsondes, rawinsondes, and

possibly the airbome polar nephelometer and impactors.

The data from each ground truth experiment will be processed, compared with the appropriate

SAM II data, and archived with the same SAM II data.

5.6 Data Processing, Formats, and Availability

5.6.1 Data Processing

The SAM II data is collected onboard the Nimbus 7 observatory and stored in the Versatile In-

formation Processor (VIP) data system for later transmission to the ground. After reception at the

Spaceflight Tracking and Data Network (STDN) these data are forwarded to the Meteorological

Operations Control Center (MetOCC) facility at GSFC for preprocessing operations including telem-

etry documentation and data formatting. MetOCC then combines the SAM II telemetry data, consis-

ting of the science data, the 10 supporting instrument measurements, the 25 analog housekeeping
measurements, and the 15 binary status checks, with spacecraft time corrections, orbital attitude and

ephemeris data, as well as solar location information, on an Image Location Tape (ILT). The ILT is

shipped to the NASA/LaRC for further science processing. GSFC also sends LaRC a National Mete-

orological Center (NMC) data tape containing temperature and pressure information needed for the

SAM II data processing.

The block diagram in Figure 5-11 presents an overview of the SAM II data reduction. LaRC

merges the SAM II instrument and selected housekeeping data with the spacecraft attitude and orbit

data. These data are screened using quick-look analyses programs to ensure proper instrument oper-

ation and to identify anomalies in the radiometric data. This basic raw radiance data is saved on mag-

netic tapes for archival. The attenuation of solar radiation produced by the earth's atmosphere during
a sunrise or sunset event, i.e., the ratio of the solar intensity measured at a specific location on the

solar disk during a scan sequence to the intensity measured at the same solar location during a scan of

the unattenuated sun, is computed as a function of the tangent altitude. Atmospheric effects due to
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refractionareincorporatedinto thedatareductionusingtemperatureandpressureprofile informa-
tion for theeventprovidedin theNMCtape.Theextinctioncoefficientasafunctionof altitudeis
determinedby calculatingtheattenuationof successivelightraysastheypassthroughtheatmosphere.
Theoutputprofiledatais comparedwith groundtruth measurementdatato ensureits accuracy.Af-
ter validation,theoutput profiles(aerosolextinctioncoefficientandaerosolnumberdensity)are
storedon tapeandtransferredto theNationalSpaceScienceDataCenter(NSSDC)for archiving.In
addition,thedataareassembledon SAMII ProfilesandSAMII Matrixdatatapesandsentto the
ImageProcessingDivision(IPD)of GSFCfor displayprocessing.Thedisplayproductsarestoredon
16mmfilm andarchivedat NSSDC.

A descriptionof the scienceprocessingalgorithms,inversionprocedures,andspecificmethods
employedin reducingtheSAMII data,will beprovidedwith thematerialarchivedat theNSSDC.

5.6.2 TapeProducts

Thefollowingtapesareproducedby LangleyResearchCenterandusedby IPD beforebeing
sentto theNSSDCfor archiving.Briefdescriptionsof thesetapesareasfollows:

• RDAT (Raw Data Archive Tape)

Contains the basic validation radiance data from each SAM II sunrise or sunset event as a

function of time and tangent viewing location.

• BANAT (Beta-aerosol Number Density Archive Tape)

This tape contains the derived aerosol extinction coefficients, modeled aerosol number den-
sities, atmospheric molecular extinction coefficients, and total extinction ratios as a function

of altitude for each SAM II sunrise and sunset observation. The tape also contains a sum-

mary description of the aerosol models used to generate number densities from extinction
coefficients.

• MATRIX (Mapped Data Matrix Tape)

Contains the projected map matrices of derived SAM II parameters for plots of stereographic

polar maps and cross sections of latitude (or longitude) versus altitude. This tape is utilized

for the display product processing.

• PROFILE (SAM II Output Product Profiles)

This tape contains the profiles of derived SAM II products. It is also utilized for the display

product processing.

The form and content of each of these tapes are specified in a tape specification document for

each tape type. The appropriate document will accompany a tape shipment to a user. See Section
1.5 of this document for details.

5.6.3 Display Products

There are 18 different types of SAM II output products produced on 16 mm film and consisting

of profiles, cross sections, maps, and time histories. Table 5-1 lists the titles and reference information

for all displays. Figures 5-12 through 5-21 are examples. Brief descriptions of these displays are as fol-

lows: 123



Table5-1
SAMII DisplayProducts

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Title of Display Products

Profiles

Solar Irradiance vs Time (SR)
Solar Irradiance vs Time (SS)

Solar Irradiance vs Altitude

• (SR) 0-40 km
• (SR) 40-160 km
• (SS) 0-40 km
• (SS) 40-160 km

Aerosol Coef. of Extinction
vs Altitude

• (SR) 0-40km
• (SR) 40-160km
• (SS) 0-40 km
• (SS) 40-140 km

Total Extinction Ratio

• (SR) 0-40 km
• (SR) 40-160km
• (SS) 0-40 km
• (SS) 40-160 km

6 Day Avg. - Aerosol Coef.
of Ext. vs Altitude

Contours

Long. Cross Sections of Aero-
sol Coef. of Ext. vs Altitude

Aerosol No. Density vs Altitude

Total Ext. Ratio vs Altitude

Lat. Cross Sections Aerosol
Coef. of Ext. vs Altitude

Aerosol No. Density vs Altitude

Total Ext. Ratio vs Altitude

Maps

Aerosol Coef. of Ext.

Aerosol No. Density

Total Ext. Ratio

Integrated No. Density

Optical Depth

Time Histories

Optical Depth From -

Alt. and Peak Ext. Ratio - 1

Frequency

Daily

Daily

Daily

Daily

1/6 Days

1/6 Days

1/6 Days

1/6 Days

36/Quarterly

36/Quarterly

36/Quarterly

14/Quarterly

14/Quarterly

14/Quarterly

3/Quarterly

3/Quarterly

15/Quarterly

2/Quarterly

No./Year

365

365

365

365

61

61

61

61

144

144

144

56

56

56

12

12

60

8

Film Spec #

F455150

F455151

F455152

F455153

F455452

F454430

F454431

F454432

F454833

F454834

F454835

F453801

F453802

F453803

F453804

F453805

F457880

F457881

Applicable
Tape Spec

T454011

T454011

T454011

T454011

T454011

T454021

T454021

T454021

T454021

T454021

T454021

T454021

T454021

T454021

T454021

T454021

T454011

T454011
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5.6.3.1 Profiles

These products are produced on a daily basis at the rate of 14 profiles per hemisphere. A com-

posite is formed by these 14 as illustrated in Figures 5-12 through 5-16. Each observation is refer-
enced to single tangent viewing time and location on the earth's surface. The SAM II parameters

profiled in this way are:

• Solar Irradiance vs Time (Figure 5-12)

• Solar Irradiance vs Altitude (Figure 5-13)

A fifteenth profile has been added representing the average sunrise/sunset observation for

that day with variability of the individual products indicated by the maximum and minimum

limits. The profiles are shown in two altitude ranges. One for 0 to 40 km with one scaling
factor and another for an altitude range of 40 to 160 km with a more sensitive scaling factor.

• Aerosol Coefficient of Extinction vs Altitude (Figure 5-14)

Same display format as above. The sixteenth chart on each daily profile frame is a cross sec-

tion of sunrise/sunset observations of that day.

• Total Extinction Ratio vs Altitude (Figure 5-15)

This display format is similar to the above. The SAM II parameter plotted is the sumof the
aerosol and molecular extinction coefficient rati0ed to the molecular extinction coefficient.

The molecular extinction coefficient is derived from the atmospheric temperature/pressure
information for the event location.

• Six-day Average Aerosol Extinction Coefficient vs Altitude (Figure 5-16)

The dotted lines indicate the variability of the individ.ual profiles. Separate graphs are pro-

duced for the low and high altitude range and for the sunrise/sunset observations. The lati-

tude interval for each 6--day period is indicated.

5.6.3.2 Cross Sections

Figure 5-17 is an example of a longitude cross section of the parameters listed in Table 5-1.

Each display is for a six--day interval, for two altitude ranges, 0 to 40 km and 40 to 160 km, and for
two one-degree latitude bands, one in both hemispheres.

Figure 5-18 is an example of a latitude cross section of the parameters listed in Table 5-1. Each
display is a three-month average for two altitude ranges for each of two ten--degree longitude bands.

There are 18 separate displays for the northern hemisphere and 18 for the southern.

5.6.3.3 Contour Maps

These products represent average values of aerosol extinction coefficient, aerosol number density,

total extinction ratio, integrated aerosol number density and optical depth over a three-month period

and plotted as contours on polar maps at various atmospheric levels.
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• AerosolCoefficientof Extinctionmaps(Figure5-19)

• AerosolNumberDensitymaps

• Total Extinction Ratio maps

North and south polar maps are produced for 14 different atmospheric levels consisting of

8 km (340 mb), 9.2 km (300 mb), 10 km (255 mb), 11.8 km (200 mb), 14 km (140 mb),

16.2 km (100 mb), 17 km (90 rob), 18 km (76 mb), 18.5 km (70 mb),20 km (56 mb), 23.9
km (30 mb), 26.6 km (20 mb), 28 km (16 mb), and 31.2 km (10 mb).

• Integrated Number Density maps

North and south polar maps of the aerosol number density are integrated over three atmo-

spheric layers: 8 to 12 km, 12 to 20 km, and 20 to 28 km. Particle model parameters used

to derive this parameter are indicated on the display frame.

• Optical Depth Map

As above except contours are for optical depth for each of three altitude layers.

5.6.3.4 Time History Plots

These products are time histories of the SAM II parameters: optical depth, peak extinction ratio

minus one, and the altitude of the peak extinction ratio plotted up to the current time and updated
seasonally.

• Optical Depth vs Time (Figure 5-20)

The total optical depth for each hemisphere is integrated upward through the stratosphere

from the tropopause level as well as from the same atmospheric levels utilized in the aerosol

coefficient of extinction maps for the averaged profiles in one-degree latitude bands between

64 degrees and 80 degrees of latitude in both hemispheres.

• Altitude and Peak of Total Extinction Ratio vs Time (Figure 5-21)

The peak extinction ratio minus one as well as the altitude of the peak extinction ratio are

plotted as a function of time for the averaged profiles in one--degree latitude bands between

64 degrees and 80 degrees of latitude in both hemispheres. The mean tropopause level as a
function of time is also indicated on this display.

5.6.4 Data Availability

The SAM II experimental data consisting of the RDAT and BANAT magnetic tapes, as well as

16 mm microfilm of the display products listed in Table 5-1, are archived at the National Space Sci-
ence Data Center. These data will be available to the archival center six months after the Nimbus 7

launch. Users requesting SAM II data should read Section 1.5 of this document for general tape and
firm ordering information.

For further information regarding these data contact the SAM II sensor scientist:
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Dr. M. P. McCormick

Mail Stop 475
NASA Langley Research Center
Hampton, VA 23665

5.7 Planned NET Experiment Investigations and Data Applications

In addition to the primary scientific objective of mapping the extinction coefficient and number
density of stratospheric aerosols as a function of altitude, latitude and longitude, the SAM II experi-
ment team is planned to use the satellite data in the following scientific investigations:

• Effect of stratospheric aerosols on radiative transfer and climate

Using the SAM II aerosol measurements and radiative climatological models, investigations
will be conducted to determine the effect of stratospheric aerosols on the earth's radiologi-
cal balance and climate in the polar regions.

• Investigation of source and sinks

The SAM II aerosol data will be searched for stratospheric aerosol injections and removal
mechanisms such as volcanic events and tropospheric/stratospheric exchange phenomena,
and, if such mechanisms are observed, they will be investigated.

• Investigation of sadden warming effects

Climatological data will be searched for sudden warming phenomena; and, if observed, the
coincident SAM II aerosol data will be investigated to determine the effect of sudden warm-
ings on the stratospheric aerosol vertical profile.

• Study of clouds in polar regions

Because of the sensitivity of SAM II to clouds, nacreous and cirrus clouds in the arctic and
antarctic will be investigated.

• Atmospheric motion studies

The SAM II aerosol data, with the optical model determined from the ground truth program,
will be used to investigate both vertical diffusion and horizontal transport phenomena. In
addition, the SAM II data will be used to study hemispherical differences and provide an in-
dication of interhemispheric transport.

• Investigation of high altitude aerosols

The SAM II data will be searched for observations of mesospheric aerosols and such observa-
tions investigated.

• Synergistic studies

The SAM II aerosol data will be used with data from the ground truth program, as well as
data from the other Nimbus 7 experiments, to investigate the effect of aerosols on strato-
spheric chemistry. For example, LIMS nitric acid data will be compared with SAM II aerosol
data to look for correlation between such aerosol-forming materials and observed aerosol
number density.
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SECTION 6

THE STRATOSPHERIC AND MESOSPHERIC SOUNDER (SAMS) EXPERIMENT

by

J. R. Drummond, J. T. Houghton, G. D. Peskett, C. D. Rodgers,

M. J. Wale, J. Whitney, E. J. Williamson

Dept. of Atmospheric Physics, Clarendon Laboratory

Oxford, England

6.1 Introduction and Objectives

6.1.1 Introduction

The Stratospheric and Mesospheric Sounder (SAMS) instrument is the fourth in a series of multi-

channel infrared radiometers designed to measure emission from the upper atmosphere, for which

conventional spectral filtering techniques do not give adequate performance.

The technique used in these radiometers is known as gas correlation spectroscopy and is based

on the use of gas cells to select emission from chosen spectral lines or from particular parts of spectral
lines.

In the Selective Chopper Radiometer (SCR) on Nimbus 4, a beam-chopping technique was em-

ployed to switch the scene (at 10 Hz) between the atmosphere and space view in a differential man-

ner between two gas cells containing different ameunts of CO 2. The "difference" signal was then
detected by a thermistor bolometer. The chief limitation in performance of the Nimbus 4 SCR was

the difficulty in maintaining a balance condition _lue to stray thermal emission from within the in-
strument.

The Nimbus 5 SCR employed a variation of this technique, in which cells containing different

amounts of CO 2 were switched in sequence (one each second) into the optical path to a pyroelectric
detector. The difference signals were then extracted on the ground. Performance in this case was

limited by gas leakage with time, by uncertainties in the effects of degradation, and by contamina-

tion of the cell windows (which give spurious difference signals).

The Pressure Modulator Radiometer (PMR) on Nimbus 6 overcame earlier difficulties by em-

ploying a single gas cell and no moving parts in front af the detector. The gas (CO2) amount in the
cell is modulated at approximately 35 Hz by an oscillating piston, and the oscillatory component of
signal arriving at the detector is related directly to the radiance of the scene, but only at the frequen-

cies corresponding to the variation in absorption of the spectral lines of the gas in the modulator cell.

The SAMS instrument extends this technique to gases other than CO2, in addition to viewing

the limb of the atmosphere rather than employing vertical sounding as in the earlier radiometers.

6.1.2 Scientific Objectives

The SAMS is a 12-channel infrared radiometer observing thermal emission and solar resonance

fluorescence from the atmospheric limb. Global measurements are made of radiation from the
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molecularspeciesasnotedinTable6-1. Thesemeasurements,wheninterpreted,togetherwith results
from the LIMS andSBUV/TOMSinstruments,provideextensivedatafor chemicalanddynamic
modelsof the stratosphereandmesosphere.

Specificobjectivesof theSAMSexperimentareto derive:

• Temperaturefromemissionin the 15/amCO2 bandfrom 15km to 80km altitude

• Vibrationaltemperatureof CO2 bandswherethey departfrom localthermodynamicequili-
brium(LTE) between50km and 140km

• Distributionof CO,NO,CH4, N20, andH20 from 15km to 60km

• Distributionsof CO2 (4.3/am)andCO(4.7/am)from 100km to 140km andH20 from 60
km to 100km to studydissociationin the lowerthermosphere

In additionanattemptwill bemadeto measurezonalwindspeedfrom 60km by usingaDop-
plershift technique.Thesemeasurementswill becomparedwith calculatedthermalwinds.

Thestudyof planetarywavesat presentbeingcarriedout using data from the Nimbus 5 SCR
and Nimbus 6 PMR will be continued and extended by making use of these new data. In addition,

the measurements allow calculation of the transfers of momentum, energy, and trace gases by mean

motions and eddies. These calculated results will be compared with the predictions of dynamic
models.

6.1.3 Technical Objectives

The SAMS instrument is designed to exploit the selectivity, energy grasp, and tuning capability

of the pressure modulation technique proved earlier for CO 2 emission measurements in the Nimbus 6
PMR described in Reference 1.

Table 6-1

Molecular Species and Spectral Bands

Constituent Spectral Band

Carbon dioxide

Water vapor

Carbon monoxide

Nitrous oxide

Methane

Nitric oxide

4.3/am and 15/am

2.7/am and 25/am to 100/am

4.7/am

7.7/am

7.7/am

5.3/am
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Themaintechnical innovation in SAMS are:

• The extension of the pressure modulation technique to other gases

• The simultaneous use of conventional chopping and pressure modulation to:

(1) extend the range of heights that can be sounded

(2) determine the pressure at the viewing level

(3) enable some interfering radiance signals to be eliminated

(4) provide additional calibration information and confidence checks

• The use of a programmable stop scan system with two independent axes to enable the best

usage of the observing time and to accommodate uncertainties in spacecraft attitude.

6.2 Principles of Operation

6.2.1 Basic Theory

The radiated power W given off by an atmospheric limb path and incident on one of the detec-
tors is:

if dry (x)W = AfZ _ Jv (x) fir rivdx dv (1)
0 0 dx

Where A is the collecting area of the telescope,

I2 is the field of view, and

rv(x) is the transmission at frequency v between the satellite and the position along the path

described by the co-ordinate x. rv(x) exhibits large and rapid variations with frequency

("lines") whose shapes in the part of the atmosphere being viewed by SAMS are deter-

mined by both collision-broadening and Doppler-broadening mechanisms.

Jr(x) is the source function, equal to the Planck function Rv (T) at the temperature T of the
path at x, if LTE obtains. It is a smooth function of frequency.

fip is the static component of the optical transmission in the ith channel (i.e., the filter

profile).

riv is the oscillatory component of the optical transmission in the i th channel (i.e., the

modulation).

A small part of the atmospheric emission spectrum lying within a group of lines (band) of a par-

ticular gas may appear as in Figure 6.1 (A) where the widths of the lines have been exaggerated com-

pared with their typical spacing.

In the SAMS radiometer, the beam passes through a high frequency mechanical modulator

(chopper) operating at a frequency fB, and an absorbing path of gas whose pressure is varied at a low
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frequency fL. Two different kinds of channels are obtained by separating the signals present at fre-

quencies fB and fL in the detector output:

• Mechanically modulated (conventional) channels where ri(fB) has no spectral dependence,

and the time average of the absorption of the gas cell is incorporated into fir

• Pressure modulated channels where riv(fL) has a complicated spectral behavior and the me-

chanical modulator is treated as a simple attenuating factor in fiv

The two kinds of channels, henceforth referred to as black and line modulated respectively, have

identical fields of view. They also occupy the same spectral interval but differ in detailed spectral
response within the interval.

6.2.2 Conventional Radiometry

Six of the 12 channels in SAMS are of the conventional type. Ignoring the effect of the cell and

any weighting due to the optional components over the very small spectral interval shown in Figure

6-1 (A), the spectral distributicn of the energy measured with these channels is simply the sum of

the incoming emission and the continuous emission generated by the optical components in front of
the chopper as pictured in Figure 6-1 (B).

These channels are adequate for observing radiation from spectral regions where the emission

lines of a given constituent are strong, wide, numerous, and not intermingled with foreign lines. Such

is the case over significant height ranges for CO 2 and H20 , but it is not the case for most other minor

atmospheric constituents. Also, radiometry of this kind fails at high altitude because atmospheric
emission becomes so small the signal is lost in the fluctuations of the instrument continuous emission.

6.2.3 Pressure Modulation Radiometry

The six remaining channels are of the pressure modulated type. An absorption cell of the gas

under consideration in which the pressure may be modulated, is placed in the optical path of the radi-

ometer (Figure 6-2). The gas in the cell possesses an absorption spectrum which matches line for line
the emission spectrum of the same gas in the atmosphere. The amount of absorption and the shapes

of the absorption lines in the cell are determined by the pressure and temperature in the cell and may

be varied. Shown in Figure 6-1 (C) is the absorption at particular values of pressure and temperature

in the same spectral interval as Figure 6-1(A) while Figure 6-1 (D) shows the absorption at higher

values of pressure (and temperature).

PRESSUREMODULATOR
CELL

WINDOW WI NDOW

__+ , _ . ...=g/DETECTOR

L T E"R S
FI

t
Figure 6-2. Pressure Modulator Optical Arrangement
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If thepressureiscycledbetweenthesetwovaluesat afrequencyfL, thereisanoscillatory com-

ponent of absorption which has a spectral distribution as shown in Figure 6-1 (E). (The pressure

cycling is not isothermal for typical values of fL (25 Hz to 50 Hz) and some temperature cycling is
therefore also present.)

There is no component between the lines or at the center of strong lines where the transmission

is close to zero throughout the pressure cycle. The modulated energy falling on the detector and

giving rise to an output at frequency fL has a spectral distribution given by the convolution of curves
in Figure 6-1 (A) and Figure 6-1 (E) and the overall filter profile of the radiometer curve in Figure

6-1 (F).

Comparing pressure modulator radiometry (curve A) with conventional radiometry (curve B), it is
clear that there is no contribution from the foreign line and the contribution from continuum emis-

sion is greatly reduced. The optical bandwidth of the system is restricted by the modulation process

to just those very narrow intervals occupied by emission lines of the chosen gas. A typical pressure

modulator arrangement will select 10-4 to 10-2 of the spectral region covered by the filter, an ap-

proximate expression for the effective spectral bandwidth being

_fiv - dv (2)[riv(1) riv(2)]

where riv (1) and riv(2) are the transmissions at the maximum and minimum values of pressure in the
modulation cycle.

When two or more gases having intermingled lines are to be observed, the radiation may be pass-

ed through a series of modulator cells to a common detector. In SAMS, the CH 4 and N20 cells are

in series, sharing a spectral interval around 7.7/am as are the CO, NO and one of the CO 2 cells sharing
a spectral interval from 4.3/am to 5.3/am. In normal operation, one cell in each chain is modulated,

while the mean pressures in the unmodulated cells are set to high values so the effect of any lines

overlapping those in the operating cell is reduced.

The side effect of pressure modulation as previously mentioned is that the pressure cycling of

the gas in the cell accompanied by a temperature excursion and a radiation (emission) signal is gene-

rated, coherent with the modulation of the incoming radiation. For stable conditions in the radiom-

eter the effect of this cell emission signal is to add a constant offset at the output of the signal

processing electronics. It is readily subtracted by the normal radiance calibration procedure.

6.2.4 Tuning of Pressure Modulated Channels

The pressure modulated channels possess a tuning capability which is limited but very significant.

Tuning may be achieved in two ways.

The first of these is by altering the mean pressure in the cell. In the example shown in Figure 6-

1, modulation occurs at the center of the weak line but in the wings of the strong line since there is

no transmission through the cell at the line center. Thus, if the mean cell pressure is chosen so most

lines are weak, modulation occurs at the line centers. However, if the cell pressure is increased so

most lines are saturated at their centers_ then only the wings of the lines are modulated. Each pressure

modulator cell includes a means of selecting different pressures by ground command.

A second way of tuning a pressure modulator channel is to shift the atmospheric emission lines

with respect to the cell absorption lines by use of the Doppler effect. A systematically varying shift

oRiGINAL P/'_" 1_
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can be obtained by scanning about the vertical (Z) axis as shown in Figure 6--4, thereby introducing

a small component of the spacecraft velocity into the line of sight. Figure 6-3 illustrates that a shift

in either direction and of greater than a linewidth can be readily obtained by this method if both sets
of lines are in the narrow Doppler-broadened regime.

6.2.5 Temperature and Concentration Measurements

For the purpose of illustration, it is useful to approximate radiance from a real non-uniform at-

mospheric path as the product of the emissivity e of the path (i.e. one minus the transmission) and

the Planck function appropriate to an effective temperature of the path, i.e.

n

Radiance = e B (T). (3)

With a given filter profile, the emissivity of the path depends on whether black or line modulation is

considered and in the latter case, the mean cell pressure and amount of Doppler shift. In most of
what follows, a viewing direction with no Doppler shift is assumed. For instance, if the wings of the

strong lines are selected by a high cell pressure, then in general a lower emissivity (more transparent)

path results than if the centers were selected by a low cell pressure. For temperature measurement

an atmospheric constituent is required which has a known distribution, and which is sufficiently plen-

tiful that opaque paths can be obtained. CO 2 is the obvious choice and temperature may be sound-
ed up to about 80 km where, for the 15 #m band, deviations from LTE begin to occur. Information

on the breakdown of LTE is obtained above this level. At lower levels other gases give rise to black

paths and redundant information is obtained and confidence checking between channels is possible.

This comparison is particularly useful for channels at shorter wavelengths because of the much strong-
er temperature dependence of the Planck function there.

With the temperature field known from measurements of CO 2 emission, the distribution of other
constituents may be deduced from the appropriate radiance measurements by inferring their emissiv-
ity (Equation 3). When sounding a particular altitude range, conditions in the cell are chosen so the

path is semi-transparent with e lying in the range 0.2 to 0.8. The most accurate composition data
may then be derived. As an example, the emissivity of CO in a limb path as a function of tangent

height for various cell pressures and atmospheric mixing ratios is shown in Figure 6-5.

6.2.6 Zonal Wind Measurement

If for a fixed angle of limb view the azimuth view is directed forward of the YZ plane and then

stepped back to behind the ZY plane at the uniform rate which provides image motion compensation
at the tangent point (Figure 6--4), the signal will vary due to the accompanying increments of added

SHIFT FOR NO DOPPLER
=o/ n_ o/_ SHIFT SHIFT FOR

-_/o ur o/u / +5% OF S/C
VELO,CITY i--'-.. W/ ____ VELOCITY

\ I .,,j
_" \ / x / x

Figure 6-3. Effect of Doppler Shift on Line Spectra
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Doppler shift. If the lines in the atmosphere and in the cell are narrow, the signal will have an appre-

ciable depend_nce on the Doppler shift and will pass through a maximum at some azimuth angle near
the normal to the flight direction. At this angle, the combined effects of the components of space-

craft velocity, the earth's rotation, and the wind along the line of sight sum to zero. If the velocity

and attitude of the spacecraft are known with sufficient accuracy throughout this scan sequence of

approximately 250 seconds, the zonal wind component may be deduced.

For this measurement it is expected the best signal-to-noise-ratios will be obtained from the

shortwave (resonance fluorescence) channels.

6.2.7 Reference Pressure Determination

Where the emissivity of a limb path seen by a pressure modulated channel is about 0.5, the change

in signal which corresponds to a change of 0.01 in emissivity (equivalent to about six percent in mix-

ing ratio) could also result from a change in the level being viewed of 0.25 km (three percent in pres-

sure or 0.004 degree in viewing direction). It is necessary, therefore, to keep a very accurate record
of changes in viewing direction and also to provide the means to derive the atmospheric pressure at

the level being viewed to three percent or better.

In SAMS, a channel in the 15/am CO 2 band having a modulator cell filled with CO 2 at higher

pressure than the other cells is included specifically for the purpose of reference pressure determina-
tion. The way in which this is done is as follows. In the approximation used previously the radiance

froma given path in the case of black modulation is eBB(TB), and in the case of line modulation it is

eLB(TL). CO 2 in the atmosphere is uniformly mixed and it is possible to choose the mean pressure
in the cell so the relative contributions of segments of the path to the radiance detected are very sim-
ilar for the black and line modualted channels over a large part of the scan range and for a wide vari-

ety of atmospheric temperature profiles. This means that T L is always very close to T B. The ratio of

the two signals is then eB/e L which is only very weakly dependent on temperature. However, eB and
eL vary differently with elevation of the line of sight. Thus, the ratio gives a measure of the amount

of CO 2 in the path and hence the pressure at the tangent height.

This pressure is also used as the reference for the other components ot the total IFOV whose po-

sitions are known (see Section 6.3..1).

Calculations show (see Figure 6-6) for levels at pressures between 2 mb and 1 mb the ratio eB/e L
is substantially independent of atmospheric temperature, even for the rather extreme atmospheric

profiles used for the calculation. Over the 1 mb to 2 mb height range, measurement of the ratio eB/

eL to 0.01 is adequate to infer the pressure with a maximum error of five percent even without taking
into account the very different temperature structures which may be involved. However, informa-

ticn about the vertical temperature structure is available from the SAMS data (and from the Tiros

Stratospheric Sounding Unit) making it possible to obtain a first order correction to the measurements

of eB[e L. The pressure measurement accuracy with the SAMS data probably will be of the order of

one percent which is equivalent to 0.08 km in altitude. Applying this correction makes it possible
for pressure measurements to be inferred when this channel is observing lower altitudes. It is likely

that measurements of acceptable accuracy can be made throughout the one mb to ten mb region.

6.2.8 Elimination of Contaminating Signals

If, within the passband of a particular channel, spectral lines from three molecular species are
intermingled but uncorrelated, then the transmissions of the atmospheric paths for black and line
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modulatedchannelsmaybewritten,

and
rB = rB(W) • rB(C1) • rB(C2)

r L = rL(W) .rL(C1 ) • rL(C2),

where (W) refers to the wanted emission and (C 1), (C2) to the contaminating emission. If the line

modulation density is constant over the filter passband (similar to the black modulation), the amount

by which the overall transmission is reduced by C 1 and C2 is the same in both cases,

so that,
rB(C1 ) • rB(C2 ) = rL(C1 ) • rL(C2 )

rB/r L = rB(W)/rL(W)

and the ratio of the measured transmissions is equal to the ratio of the uncontaminated transmission

which is chiefly a function of the amount of (W) but with some slight temperature dependence. This

technique for eliminating signals from gases other than the one of interest which emit within any

spectral interval has been applied to measurements in the NO band at 5.3 tam, and the NO 2 band at
6.0 tam and is described by Chaloner et al. (1978) and Drummond and Jarnot (1978).

6.2.9 Basic Measuring Procedure

The line of sight of the radiometer can be stepped in elevation to view any altitude in the limb.

A measurement sequence includes clear views to space and returns to levels where good altitude data

can be derived. The purpose of the space view is to provide the instrumental offset signal (including

the optics emission) which must be subtracted from all other signals; the differences are small frac-

tions of the available dynamic range for most atmospheric views. (An important exception is the 2.7

tam water vapor channel where large fluorescence signals are received when the limb is in sunlight.)

Calibration points at the other end of the range are obtained occasionally by moving a blackbody of
known temperature into the beam.

6.3 The SAMS Radiometer

The SAMS radiometer consists of a sensor housing and an electronics module, the former being

mounted under the sensory ring on the +Y side of the spacecraft and viewing the limb of the atmo-
sphere on that side, i.e. normal to the direction of flight.

6.3.1 Optics

A central section through the optical system in the YZ plane is shown in Figure 6-7. The para-
boloid (M2), ellipsoid (M3), folding mirror (M4), and composite field stop (M5) form a telescope
with a collecting aperture of 177 cm 2 and a field of view with three separate components (A, B, C)

each of solid angle 7.8 x 10 -5 steradians. A fourth (plane) facet on M5 is used for alignment pur-
poses.

The viewing direction of the radiometer may be stepped independently in tangent height and in

azimuth by tilting the plane scanning mirror (M _) about axes parallel to the X and Z (roll and yaw)
axes of the spacecraft.
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The view in azimuth is either set normal to the direction of flight or stepped to perform an

image-motion-compensated scan, taking about 250 seconds, from 15 degrees forward to 15 degrees

behind the normal. The limb Scanning covers a range from a clear view of space down to the earth's

surface. Each step moves the line of sight (LOS) by half a FOV component (i.e. 5 km at the tangent
height). The range may be extended down to an angle approximately 70 degrees intersection of the

LOS with the local vertical (Figure 6-8). Allowance must be made for spacecraft orbit and attitude

uncertainties. The actual limb scan range is set by ground command to the desired portion of the 6

degree range available. The FOV and LOS angles are shown in Figure 6-8. Note the "smearing" due
to the basic 1.8 second measuring period.

As shown in Figure 6-7, the facets of M5 distribute the beam to three trains of secondary optics,

each associated with one of the components of the field of view. These optics trains contain pressure

modulator cells operating in the 25 Hz to 50 Hz region, filters and beam splitters defining the optical
passbands, relay components, and detectors. Table 6-2 shows how the channels are assigned to the
three FOV's and lists their functions.

Positioned near M3, an aperture plane, a black chopper vibrating at 254 Hz modulates the beam

to a depth of five percent peak to peak. Shallow chopping avoids the 50 percent average attenuation

ot_the beam, and hence of the line-modulated components that would occur with 100 percent chop-
ping.

Calibration blackbody can be introduced into the system at the first focal point (Figure 6-7). It
consists of a thick aluminum disc 1 cm in diameter, machined on the inward face into the form of a

re-entrant cone and painted black; the outward face is gold plated.

6.3.2 Thermal Design

Thermally, the SAMS sensor housing can be considered to be in four parts, the primary optics,
the secondary optics, the A234 (InSb) detector cooler, and the sensor electronics unit (SEU). These

may be identified in Figure 6-7 which shows the position of a thermal partition (dotted) between

the primary and secondary optics.

The scan mirror and paraboloid are intended to cool to about -5°C to reduce continuum emis-

sion, and the B 1 (PbS) detector radiator to about -10°C. The secondary optics compartment is

coupled to the spacecraft and maintains a nominal temperature of about 18°C. The SEU is weakly

coupled to the optics housing but thermally strapped to the spacecraft.

The components of the cooler (sunshield, cone and patch) are designed to operate at -15°C,
200°K and 145°K respectively. The InSb detector assembly is provided with heaters to enable the lens

temperatures to be raised to approximately the spacecraft temperature for decontamination if re-
quired.

The dynamic response to simulated orbital variations of spacecraft mount temperature is shown
in Figure 6-9.

6.3.3 Detectors

Three different kinds of detectors are used, all having active areas of 3.2 by 0.32 mm and doub-

let optics designed to image the active area on the relevant facet (A, B or C) of M5. Triglycine sulfate
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Table 6-2

Signal Channel Functions

FOV CHAN GAS

AI
CO2

A2
A

A3 CO

A4 NO

B1
B H20

B2

C1 CO2

C C2 N20

C3 CH4

BAND DATA PRODUCT

15_m TEMPERATURE; VIBRATIONAL TEMPERATURE;

ATTITUDE; CO2 DISTRIBUTION; WIND.

4-5pm
DISTRIPUTION

2.7_m DISTRIBUTION, WIND.

25-I00_m DISTRIBUTION

15_m ATTITUDE, TEMPERATURE

7.7pm DISTRIBUTION

(TGS) pyroelectric flake bolometers are used for the wavelengths longer than 7 tam, an InSb photo-

voltaic diode for the 5/am region, and a PbS photoconductive plate for the 2.7 tam H20 channel. Each
detector together with its optics and preamplifier is built into a module. A listing of some key opti-
cal parameters is given in Table 6-3 which indicates how the seven pressure modulator cells and six

detectors are assigned to the twelve signal processing channels. Where there are cells in series in the

path to a particular detector only one will normally be pressure modulated at any time. The desired
combinations are selected by ground command.

6.3.4 Scan Mirror Assembly

The scanning mirror is mounted on a frame carried on a pair of cross-leaf springs (flexipivots)

which allow vertical (limb) scanning of the line of sight. This assembly is carried on another frame,
also supported on flexipivots, providing horizontal (azimuth) scanning. In each axis, the position is

set by a jack screw, driven directly by a 45 degree stepping motor, and a recirculating-ball nut. The

jack screws are lubricated for operation in space by means of a lead film. The smallest increments in
the line of sight are 4.8 arc minutes in limb and 7.3 arc minutes in azimuth.

The mirror movement is initiated and is usually completed during the signal channel integrator
run--down plus read-out period. This ensures that data lost during mirror movement is minimized.

The mirror mechanism is controlled by the program control logic (PCL). See Figure 6-10 for a block

schematic of the SAMS electronics and mechanisms. Overall timing is shown in Figure 6-11.

In the limb axis the mirror can be moved to any step position but in azimuth only a sequential

scan can be performed. By reloading the PCL memory from the ground, the most suitable scanning
patterns for achieving particular measurement objectives can be realized. Most of the control logic

can be bypassed in a backup mode in which the mechanism responds to single step relay commands.

In each axis, position is measured with a linear variable differential transformer (LVDT) coupled
directly to the mirror cradle. The limb LVDT is connected to a 14 bit triple-slope integration-type

ADC which gives the system a resolution of 0.045 arc minutes in sight line within the 6 degree angu-
lar range.
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Figure 6-l l. Overall Timing Diagram
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The azimuth LVDT feeds a simple analog circuit giving a measurement with a resolution of 1.8

arc minutes in sight line. Unlike the limb LVDT, the output of the azimuth system is used in the

position control circuit; it defines the non-scanning position in the YZ plane.

6.3.5 Blackbody

The calibration blackbody is mounted on a radius arm fixed to the shaft of a 90 degree stepping

motor. In the normal energized state the arm is held out of the beam with a spring. When the motor

is energized the arm moves up to an end-stop which defines the in-beam position. Other windings

on the motor can be energized to assist the pull spring if this becomes necessary. Blackbody oper-
ation is normally controlled by the PCL; back-up relay commands are also provided

6.3.6 Black Chopper

The chopper consists of two etched copper grids, painted black and positioned one above the

other. One is mounted on the end of a flat cantilever leaf-spring; the other is fixed to the spring

mount. Oscillation is maintained at the mechanical resonant frequency of the grid/spring assembly

by an amplifier having controlled limiting, and redundant pairs of piezo-electric ceramic plates,

bonded to the spring leaf, which serve as drive and position-sensing elements. The drive loop sup-

plies a phase reference to the signal processing circuits.

To minimize reaction forces on the SAMS structure the chopper baseplate is mounted on a pivot

through the center of mass which allows it to move in antiphase to the spring motion.

6.3.7 Pressure Modulators

A section of a pressure modulator assembly is shown in Figure 6-12. It consists of an absorp-

tion cell coupled by drilled channels to a cylinder of 3 cms in diameter in which a piston oscillates

with an amplitude of 3 mm peak to peak and a running clearance of 0.05 ram. The piston, the drive

coil (part of a linear motor), and a soft iron slug are all mounted on a shaft which is carried on etched

Beryllium-Copper diaphragm springs. The motor magnet is inside the cylinder, while a coil surround-

ing the iron slug, and which with it constitutes a differential transformer position sensor, is outside

the cylinder. Oscillation is maintained at the resonant frequency and at constant amplitude by a con-

trol loop coupled to the position sensor and motor. The loop can be switched into a negative feed-

back mode if it is desired to inhibit piston motion. The resonant frequency of the suspended parts

depends on the mean pressure of the gas in the cylinder and typically varies from 25 Hz (evacuated)

to 50 Hz (at 40 mb). Piston frequency is a valuable pressure monitor and is telemetered with an ac-

curacy of better than 1 part in 6000 for each modulator. The mean gas pressure in the the cylinder is

governed by the temperature of a few grams of molecular sieve material held in a side arm, on which

most of the gas is stored by absorption. The temperature is controlled by a thermostat which can be

programmed from the ground via the PCL, the number of settings (two or four) depending on the

enclosed gas. Before a cylinder is filled with gas it is subjected to a rigorous program of bakeout,

pumping and leak testing.

6.3.8 Cooler Door Release

The cooler door is held closed by keys fixed to the shafts of two rotary solenoids which project

through key plates mounted on either side of the door. On receipt of the second of two release

commands, both solenoids are energized for 250 ms, the keys rotate to match slots in the plates and
the door is pushed and held open by springs. The door is not recloseable in orbit.
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6.3.9 Signal Processing

The signal processing chain for one of the six pairs of line and black modulated channels is

shown in Figure 6-13. Two modulators are indicated (as in the C2/3 chain) and the chopper, which

is common to all six pairs, is also included. The output of the detector-preamplifier assembly, con-

taining line and black modulated signals, is fed to active filter amplifiers having passbands of 20 Hz to
60 Hz and 180 Hz to 300 Hz respectively. Each filter amplifier is followed by a phase sensitive recti-
fier whose reference waveform is derived from the modulator on the chopper as appropriate, via a

phase-correction network. In the former case this network is designed to operate over the whole

range of frequencies (25-50 Hz) encountered for different modulator gas pressures. Selection of the
correct reference waveform is controlled by the modulator enable/inhibit logic. Each phase-sensitive

rectifier feeds a 12-bit dual-slope integration-type ADC, the output of which is parallel-loaded into

a shift register. The ADC can recycle, giving an overrange factor of two when required (Figure 6-14

B).

The twelve registers associated with the twelve signal channels are connected in series. They are

loaded simultaneously each 1.8 second measuring period and read out as a block into the data hand-

ling system. See Figure 6-15 for timing.

With the modulator pressures at the maximum settings the positions of the limb radiance and

calibration signals on the overall signal transfer functions are similar to those in the chopped channels.

The scale is inverted, however, on the B 1 channels which are observing solar resonance fluorescence.

The two cases are illustrated in Figure 6-14 (A) and (B).

6.4 Ground Calibration

6.4.1 General

An extensive program of testing and calibration has preceded launch. Measurements essential to

the interpretation of signals from the instrument in orbit are of two main types:

• A calibration scheme is required for radiance which takes account of variation in operating
conditions and temperatures;in particular any stray responses must be known or calculable

The response of the instrument to emission from atmospheric paths must be calculable and
a measurement therefore must be made of the response of the system to such paths of

gas, so that the spectroscopic calculations by which atmospheric quantities are deduced can
be verified.

The field of view of each channel must be known individually and in relation to the attitude de-

termination channel. The limb scan angle telemetry system must also be accurately calibrated so that

the attitude is known at all times during a scan sequence.

The vacuum/thermal chamber at Oxford provides thermal simulation of the spacecraft interface

and of orbital temperature conditions. In addition various sources are available for calibration pur-

poses (see Figure 6-15).
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Figure 6-14. Signal Channel Transfer Characteristics for Channel B 1
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6.4.2 Basic Radiance Calibration

Radiance calibration is intended to:

• Provide a basis for the model of the response of the instrument used in the in-flight calibra-
tion scheme

• Give a check of accuracy of calculations of the response of the pressure modulated (PM)

channels to known radiance input

• Determine any scan angle dependence of the response

The source used for this calibration is a black cone which fills the whole instrument aperture.

The temperature of this cone can be controlled at points between liquid nitrogen (LN 2 at 77K) and
about +50°C. Several calibration points for known radiance inputs are obtained for each of the

modulator pressure settings. During this test the temperature of the instrument is cycled at the

Nimbus orbital period but with rather greater than expected excursions. In this way the tempera-

ture coefficients of response are determined dynamically; the response of the instrument is then

compared with the known radiance, weighted by the calculated modulator response.

6.4.3 Scan Angle Dependence Checks

The SAMS sensor may be rotated about the axis of the scan mirror assembly by means of a

high precision calibrated lead-screw (see Figure 6-15). This may be used to direct the optical axis

of the instrument to the center of the cavity for all limb scan angle positions and so day variation

of response with scan angle can be determined for a constant radiance input.

Targets are fitted on the axis of the LOS of the instrument, to be viewed with the mirror at

the center of azimuth scan, and off axis, to be viewed at the extreme of azimuth scan. The axial

target can be controlled at any temperature, but the off-axis target is maintained at LN 2 temper-
ature. This provides a constant standard radiance throughout the extended test, and may be used

in conjunction with the other target to determine any change in response at the extremes of azi-
muth scan.

6.4.4 Response of PM Channels to Atmospheric Paths

The response of the PM channel to gas paths is checked by measurement of the transmission of

simulated atmospheric paths in the laboratory using the instrument modulator and detector subsys-

tems before final assembly, and ones of the same type constructed specifically for this purpose. The

apparatus consists of a multiple-path white cell of up to 10 meter path length. Transmissions of paths

measured with this equipment are compared with calculations of response from line data, and infor-
mation from both sources is combined in the radiance model used for retrieval.

6.4.5 Field of View Measurement

In orbit the LOS of the instrument is determined from the ratio of line and black modulated sig-

nals in the C 1 channel (Section 6.2.9). We need, therefore, to know the LOS of the other channels

with respect to this channel. In addition, the shape of the field response must be measured, particu-

larly of the lower edge.
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For this test a precision collimator with a narrow-slit hot source replaces the extended black

targets. The lead-screw system is used to rotate SAMS slowly through the parallel radiation from the
collimator, and the field response is thus determined.

This facility is also used for general optical checks and in particular for a calibration of the limb

scan angle telemetry (LVDT) system. The lead-screw is driven slowly and continuously while the

PCL is programmed to step the SAMS scan mirror so that the field of view of the instrument passes

through the collimated beam once per step. By matching the respective points on the field response,
the LVDT systems can be calibrated directly in terms of the lead-screw.

This test and the primary field of view measurements are carried out at several temperatures over
the expected operating range.

6.5 Data Processing, Formats, and Availability

6.5.1 Data Processing

6.5.1.1 Processing Flow

SAMS data is extracted from the Nimbus 7 telemetry at GSFC and held for 24 hours. Once
each day the previous day's data is transmitted to Oxford, England via NASA transmission lines. As

it is received at Oxford the data undergoes quick-look processing to check the behavior of the SAMS

instrument. This also allows monitoring of the stratosphere in near-real time so that an optimum
operating mode can be maintained.

The image location tapes are transmitted to Oxford three to four weeks after the initial data.

At this stage the data is reprocessed with the aid of more detailed and more accurate algorithms (ob-

tained from further analyses of the original data) to produce magnetic tapes of radiances and derived
SAMS parameters as described in Section 6.5.2. These tapes are mailed to the IPD at GSFC. IPD

copies some of them and sends these copies to NET users. IPD uses the SAMS MATRIX tapes as in-

put to generate the SAMS display products described in Section 6.5.3. All original tapes and micro-
film are then sent to NSSDC for archiving. NSSDC makes copies of these products for users.

6.5.1.2 Summary of Processing Analysis

The quick look analysis is based on theapproximation for radiance R(v) at wavenumber v:

R(v) -_ B(v,Zt) e (Z t)

where B(o,Zt) is the Planck function at the tangent height Z t and e(Zt) is the emissivity of the path

through the limb. In the case of the CO 2 channels, e(Zt) is known, so that B can be derived, giving a
first approximation to the temperature profile. Once this is known, B can be calculated for other

gases, so that e can be obtained from the measurements and hence the gas concentration at tangent
height Z t.

The final retrieval is a maximum likelihood estimator using a linearization of the full nonlinear

radiance transfer equation, with the quick-look retrieval as first guess. The attitude reference pro-
vided by the spacecraft attitude control system is not of adequate accuarcy for the analysis so it is
necessary to derive the tangent height from the measurements as described in Section 6.2.7. This
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methodprovidesafirst guessfor usein tbemaximumlikelihoodestimator.Sequentialestimatorsare
usedthroughoutto providecontinuityin thesolutionalongthetangentpoint track.

6.5.2 TapeProducts

Thefollowingtapesareproducedby Oxford,usedby IPD,andthen sent to the NSSDC for ar-

chiving. Brief descriptions of these tapes are as follows:

• RAT (Radiance Archive Tape)

These tapes contain calibrated radiances versus scan angle records for all useable scans. Users
may want to use these tapes to try their own methods of profile retrieval.

• MATRIX (Mapped Data Matrix Tape)

These tapes contain northern and southern hemisphere polar map (0°-90 °) and Mercator

(-+32 °) matrices on constant pressure surfaces for all SAMS parameters to be mapped. Also

on these tapes are all contoured cross-section plots. Each record contains all necessary

reference and title information needed for annotation of each display.

The form and content of these is specified in a tape specification document for each tape type. The

appropriate document will accompany a tape shipment to a user. See Section 1.5 of this document
for details.

6.5.3 Film Products

The SAMS data are displayed on 112 different map sets and 12 different cross sections. Six

parameters are mapped: temperature, water vapor, nitrous oxide, methane, carbon monoxide, and

nitric oxide. (See Figures 6-16 and 6-17 for examples.) Each parameter is mapped at 16 pressure lev-

els each month and each three months. Because of instrument operating restrictions only four param-

eters are mapped at six pressure levels on any given day. However, it is expected by the end of each

month, data will be collected for all six parameters at all pressure levels. (Because of its day/night

variability, daytime nitric oxide data is mapped separately from the nighttime nitric oxide data.) The

same six parameters are averaged and displayed on 50°S to 70°N cross sections each day, month, and

three months. (See Figures 6-18 and 6-19).

Table 6--4 lists the titles of all SAMS microfilm displays and the corresponding film specification

number for each. All parameters are produced at more than one time scale as Table 6-4 shows. In-

terpreting the fourth digit from the left in each specification number gives the frequency of produc-

tion of the parameter listed in the title:

XXX1XX = produced every day,

XXX7XX = produced every month, and

XXX8XX = produced every three months.

All map displays contain one north and one south polar stereographic projection (pole to equa-

tor for each) and one Mercator projection (+-32°). Each map contains contoured data as specified in

the display title. Immediately beneath the Mercator map is contouring information giving the contour
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Table 6-4

Titles and Film Specification Numbers for SAMS Microfilm Products

Film

Spec
Number

883101

883701

883801

883102

883702

883802

883103

883703

883803

883104

883704

883804

883105

883705

883805

883106

883706

883806

883107

883707

883807

884130

884730

884830

884131

884731

884831

884132

884732

884832

884133

Film Product Title

MAPS

TEMPERATURE (K) AT XXX.XXXX*MB

WATER VAPOR (H20) AT XXX.XXXX MB

NITROUS OXIDE (N20) AT XXX.XXXX MB

METHANE (CH 4) AT XXX.XXXX MB

CARBON MONOXIDE (CO) AT XXX.XXXX MB

NITRIC OXIDE (NO) AT XXX.XXXX MB (daytime data)

NITRIC OXIDE (NO) AT XXX.XXXX MB (Nightime data)

CROSS SECTIONS

LATITUDINAL CROSS SECTIONS OF TEMPERATURE (K)

LATITUDINAL CROSS SECTIONS OF WATER VAPOR (H20)

LATITUDINAL CROSS SECTIONS OF NITROUS OXIDE (N20)

LATITUDINAL CROSS SECTIONS OF METHANE (CH 4)
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Table6-4 (Continued)

Film
Spec

Number
884733
884833
884134
884734
884834
884135
884735
884835

FilmProductTitle

LATITUDINALCROSSSECTIONSOFCARBONMONOXIDE(CO)

LATITUDINALCROSSSECTIONSOFNITRICOXIDE(NO)

*Theonemonthandthreemonthmapsarecontouredanddisplayedat 16pressurelevels.Theseare300,100,70,
30,10,5,2,1,0.5,0.1,0.03,0.01,0.003,0.001,0.0003,and0.0001millibars.Becauseof instrumentoperating
constraints,foranyparticularsetof one-daymapsallpressurelevelsarenotpossible.However,alargecollection
ofone-daymapsetsshouldhaveallpressurelevelsasshownabove.

units,intervalbetweencontourlines,andthemaximumandminimumvaluecontoured.All mapdis-
playscontainanindicatorof thequantityof datawithin adisplay.On theonedaydisplaysthereis
a"missingorbitsperday" codespecifyinghowmanyorbitsof dataaremissingfrom that day'sinput
to themap(SeeFigure6-16). On theonemonthandthreemonthmaps(Figure6-17) thereisan
"on-off cycle"scalespecifyingthedaysduringthedisplayperiodwhentheinstrumentwasonand
off. If adayon thescaleis"filled-in" the instrumentwason, thedatawascollected,interpreted,and
usedin thecontouring.If adayisnot filled in, theinstrumentwaseitheroff or thedatawasunuse-
ablefor somereason.

Thepolarstereographicmapson theoneday displays (Figure 6-16 is an example) contain "dot

tracks" with each dot representing a tangent point data value location used to construct the contours

on the maps.

Figures 6-18 and 6-19 are examples of the SAMS cross section displays. Figure 6-18 is typical

for all parameters except nitric oxide. Figure 6-19 is typical for nitric oxide. All parameters (except
nitric oxide) have cross section displays of the average of the day and night data and the difference

between the day and night data. Because of the large day-night difference the nitric oxide displays

have one cross section with only daytime data and the other with only nighttime data. Data are ref-

erenced vertically by pressure and standard atmosphere altitudes, and horizontally by latitudes.

Title and reference information at the bottom of all displays is mostly self-explanatory. The

right half of the last line, however, requires explanation. This information is mainly used for cata-

loging and information control. These items are: the physical tape number the data is stored on

(TXXXXX), the algorithm reference number used in processing the data (ALGO XXX), the film

specification number (F88XXXX),the project data format code (HA), and the film frame number

(xxxxxx).
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6.5.4 DataAvailability

TheSAMSexperimentaldataconsistingof themagnetictapesdescribedin Section6.5.2andthe
16mmmicrofilmdescribedandillustratedin Section6.5.3arearchievedat the NSSDC.It isantici-
patedthat thefirst datasetswill not arriveat NSSDC until at least three to six months after launch.

Users requesting SAMS data should read Section 1.5 of this document for general tape and film or-
dering information.

6.6 Reference

1. Curtis et al. The Pressure Modulator Radiometer. Proc. Roy. Soc. London; A 337, pp. 135-
150, 1974.
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SECTION 7

THE SOLAR BACKSCATTER ULTRAVIOLET (SBUV) AND TOTAL OZONE MAPPING

SPECTROMETER (TOMS) EXPERIMENT

by

Donald Heath and Arlin J. Krueger

National Aeronautics and Space Administration

Goddard Space Flight Center

and

Hongwoo Park

Systems and Applied Sciences Corporation
Riverdale, Maryland

7.1 Introduction

The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) ex-

periment is an expanded and improved version of the Backscatter Ultraviolet (BUV) experiment on
Nimbus 4, and is composed of two essentially independent instruments. The Solar Backscatter Ul-

traviolet (SBUV) subsystem consists of a double Ebert-Fastie spectrometer and a filter photometer
similar to the BUV. Both channels simultaneously view identical fields of solar radiation scattered

by the terrestrial atmosphere in the nadir of the solar flux scattered from the instrument diffuser

plate which is deployed on command. The spectrometer serially monitors 12 selected narrow wave-

length bands in the spectral region from 250 nm to 340 nm, or continuously scans the wavelength
range from 160 nm to 400 nm, while the photometer measures the light in a fixed band centered at

343 nm. This instrument is intended for use in determining the total ozone and its vertical distribu-

tion above the ozone maximum for measuring the ultraviolet solar spectral irradiance.

The Total Ozone Mapping Spectrometer (TOMS) subsystem employs a single monochromator
whose IFOV is scanned through the subsatellite point and perpendicular to the orbital plane. The

backscattered radiation is sampled at six wavelengths from 312.5 nm to 380 nm sequentially in

three degree steps in the -+51 degrees cross scan from the nadir. This scanning creates a contiguous
mapping of the total ozone since the scans of consecutive orbits overlap.

The polar orbit of this satellite makes possible tho ozone measurements on a global basis and

the expected instrumental lifetime should permit the long-term monitoring of ozone and the ultra-
violet solar flux. Recent advances in the standard spectral irradiance sources used in the calibration
will provide better accuracy in the absolute solar flux measurement.

7.2 Scientific Objectives

The SBUV/TOMS is designed to measure the extraterrestrial ultraviolet solar irradiance and the

solar ultraviolet radiation backscattered from the earth and its atmosphere. Methods to recover the

ozone information from backscattered ultraviolet measurements are described in References 1, 2, 3,
and 4.
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Theobjectivesof theSBUV/TOMSexperimentmaybesummarizedasfollows:

SBUV

• Determinethetotal amountof atmospheric ozone in a vertical column above the
subsatellite point

• Determine the vertical profile of ozone above the ozone maximum
• Measure the ultraviolet solar spectral irradiance and monitor its temporal variability over

the wavelength range from 160 to 400 nm, with a spectral resolution of 1 nm.

TOMS

• Obtain contiguous mapping of total ozone.

7.3 Instrumentation

The SBUV/TOMS consists of three units: two sensor modules and one electronic module (ELM).

The sensor modules house the optical components of each subsystem, the high voltage power

supplies, and the first stages of the signal processing electronics. The electronics module houses the
bulk of the signal processing electronics plus the circuitry required to support the whole system ;

the command receiving and decoding relays, low voltage power supplies, interface circuits for space-

craft clocks, telemetry readout and control circuits. Figure 7-1 shows a functional block diagram
for the SBUV/TOMS. A preliminary design of the SBUV/TOMS has been reported in Reference 5.

7.3.1 SBUV Subsystems

Figure 7-2 shows an optical diagram of the SBUV. The SBUV is composed of a double mono-
chromator, a photometer and supplementary optical mechanical and electronic equipment. Two

Ebert-Fastie type monochromators are used in tandem and connected with reflective transfer optics

and an intermediate slit. Each monochromator has a single spherical collimating mirror of a 250 mm

focal length coated with aluminum and a halographic diffraction grating having a 52 mm x 52 mm

rules area and 2400 grooves per mm.

The optical design of the monochromator was aided by computer-plotted ray tracing. The

spatial shape of the exit slit was also determined by ray tracing. The spectrometer has fixed entrance
and exit slits which are 30 mm long. Their widths are equivalent to a 1 nm spectral bandwidth near

300 nm.

The SBUV monochromator scans 12 discrete wavelengths ranging from 250 nm to 340 nm and

5 wavelength calibration steps centered near 253.7 nm, or scans continuously the wavelength range

from 160 to 400 nm in 0.2 nm steps. The wavelength in the continuous scan mode is determined
from the cam position telemetered by a high resolution encoder mounted on the cam shaft. The

two gratings are rigidly mounted to a single casting. The casting provides the function of a bearing
axis, a wavelength drive arm, and support for the cam follower bearing.

The SBUV used three detectors: one photomultiplier tube (PMT) and one photodiode for the
monochromator, and one photodiode for the photometer. The PMT is an ITT F4090 type with a

bialkali photocathode and a fused silica window. The window material was selected for transmittance

at 160 nm and minimum florescence resulting from the high energy particle in the trapped radiation

belts. The photodiodes are vacuum sealed and have the same photocathode characteristic as the P
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A focusingmirrorsystemimmediatelyfollowingtheexit slit imagesthegratingsonarectangular
opticalstopimmediatelyin front of the PMT. Thisopticalstopmatchesthegratingimagein both
sizeandlocation,,ndthuspreventslight raysthat scatterfrom wailsandstructuralpartsof the mon-
ochromatorfrom reachingthe photomultiplier.A portion(abouttenpercent)of theexit beamis
directedto thereferencephotodiodeby asmallreflectivebeamdivider. Thisreferencephotodiode
isusedat highlight levelsto monitorthegainof the PMTduringprolongedoperationin space.

Thephotometerof theSBUV,whichisdesignedto measurethegroundreflectivity,employs
aphotodiode,aninterferencefilter, a field lensandtransfermirrors. It hasa3 nm bandwidth(full
widthat halfmaximum)centeredat 343nmandan11.3° x 11.3° field of view(FOV) whichmatches
andis co-linearwith that of thedoublemonochromator.Theinstantaneousfield of view(IFOV)
traces200km wideswathson theground.Theswathsareseparatedby the26-degreelongitudein-
tervalbetweensuccessiveorbits.

Themonochromatorandthephotometereachhaveopticalchopperwheels.Thechopperop-
eratesat afrequencyof 25Hz,enablingthedetectingsystemto removethedarkcurrentasdescribed
in Section7.3.4.

A depolarizeris usedto eliminatethesensitivityof thegratingmonochromatorto polarization
of thebackscatteredradiation.Thedepolarizeris composedof four piecesof wedge-shapedquartz
so the optical activity characteristicof the quartz crystalmixes the electricvectorof theradia-
tion within the 1nmbandwidthalongtheslit height. Thismakestheresultantoutput signalinsen-
sitiveto thestateof initial polarizationof light enteringtheentranceslit. Thisdeviceisnecessary
becausethebackscatteredsunlightis highlypolarizedneartheterminatorandthegratingmonochro-
matormayhaveaverystrongpolarizationcharacteristicwhichisusuallywavelengthdependent.
Figure7-3 showsthepolarizationsensitivityfor theSBUVaswellasfor theTOMS.

TheSBUValsocontainsa roughenedaluminumdiffuserandasteppermotor. Thediffuserplate
isusedto viewthesunfor solarspectralirradiancemeasurementsandto intercepttheradiationfrom
theonboardlow-pressuremercury-argonlampwhichisusedfor wavelengthcalibration.TheTOMS
sharesthediffuserwith theSBUVfor solarspectralirradiancemeasurement.Thediffuserisdriven
byasteppermotorto oneofthreepositionsoncommand:SBUV,TOMS,STOW.In thenadirlooking
earthradiancemeasurement,thediffuseris storedin theSTOWposition.

Theabsorptioncrosssectionof ozonevariesby nearlyfiveordersof magnitudebetween250
nmand340nm,andthesolarflux at 250nmisaboutonetenthof that at 340nm. Thisrequires
ahighstraylight rejectioncapabilityto avoidthestraylight contaminationby the moreintense
solarflux at longerwavelengths.Theprimemeansto reducethestraylight is to useadoublemono-
chromator.Thesecondmonochromatorandtheintermediateslit reducestheunwantedstraylight
emergingfrom the firstmonochromator.Thestraylight is further reducedby forminganimageof
thegratingonarectangularopticalstopimmediatelyin front of the detectorface. Thispermitsonly
the light reflectedfromthe gratingto bedetected.An improvementhasbeenobtainedby using
gratingsruledbyphotorestivetechnique(halographicgratings).Theseproducelowerscatteredlight
thanamechanicallyruledgrating.Figure7--4showsthestraylight rejectioncapabilityof theSBUV.

7.3.2 TOMSSubsystem

TheTOMSis asingleEbert-Fastiespectrometerwith afixedgratingandanarrayof exitslits.
Figure7-5 is theopticsdiagramof theTOMS.TheTOMShasa3° by 3 ° instantaneous field of

view and measures six discrete wavelengths ranging from 312.5 to 380 nm with a 1 nm bandwidth.
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The PLL Js synchronous to the Nimbus clock frequency. The disc also serves as chopper to allow

synchronous modulation of the optical signal. Figure 7-6 shows a timing diagram of the TOMS

chopper sequence at each scene. The TOMS light chopping frequency is 143 Hz. The wavelength

selector disc also has a set of entrance slits for wavelength calibrations. A set of holes (exit slits for

the 317.5 nm band) in the wavelength selector serve as a fixed exit during wavelength calibration.

The TOMS is a cross-course scanning instrument. A scanning mirror scans across the track -+51

degrees from the nadir in 3 degree steps. Figure 7-7 shows the instantaneous field of view (IFOV)

of the SBUV/TOMS in the nadir direction and Figure 7-8 shows TOMS fields of view projected on

a plane tangent to the earth at the subsatellite point. One complete cross scan takes eight seconds,
including one second for retrace, while recording the data for 35 scenes. The encoder senses the

position of the scan mirror on a six-bit code word which is telemetered to the ground with the scene

data. At each scene during stepping, the chopper sequentially gates all six wavelengths four times

such that the selected wavelengths are gated in succession and the order of gating is reversed in next
sampling (see Figure 7-6). The total time spent at each scene is 200 ms which includes 168 ms for

six wavelengths data sampling and 32 ms for the scanner settling.

The TOMS uses the same type of PMT as the SBUV, and has a separate mercury-argon lamp
for wavelength calibration and a separate depolarizer. However, as noted above, the TOMS shares
the diffuser with the SBUV for solar irradiance measurement.

The TOMS scanner is length calibration and is stepped up to six degrees over a horizontal posi-

tion during solar irradiance measurerrent to view the diffuser commanded to TOMS position.

7.3.3 SBUV/TOMS Operating Modes

Five operating modes of the SBUV/TOMS determine data processing sequences, data formats,

and the SBUV wavelength cam operation. Only Mode 2 is related to the TOMS operation. The
TOMS has five scanner modes. Each mode is briefly described.

7.3.3.1 SBUV Mode 1 (Step Scan)

The SBUV measures photometric response at each of the following wavelengths 339.8, 331.2,

317.5,312.5,305.8, 301.9, 297.5,292.2,287.6, 283.0, 273.5, and 255.5 nm. The wavelength cam

is sequentially driven to each of the wavelength positions listed (in the order given) and upon reach-

ing each position, the cam stops and a one-second integration is performed. Upon completion of
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thesamplingperiod,thecamadvancesto thenextposition. Thiscyclerepeatsuntil all 12positions
havebeensampled.At the completionof the lastsample(255.5nm),the camcontinuesuntil the
cagepositiQnisreached.Thissequencerequires32seconds(2 VIPmajorframes)andisrepeated
until a differentmodeiscommanded.

7.3.3.2 SBUVMode2(WavelengthCalibration)

Mode2 issimiliarto mode1exceptdifferentwavelengthsaresampled.Thewavelengthposi-
tionsare254.7,254.2,253.7,253.2,and252.7nmin order. TheSBUVremainsin this modeuntil
commandedotherwise.Eachmeasurementsequencecyclerequires32seconds(two VIPmajor
frames).Duringmode2, theTOMSsamplesresponseat four calibrationwavelengths:297.5,297.0,
296.5,and296.0nm.

7.3.3.3 SBUVMode3 (CageCam)

Thecagecamcommandcausesthe SBUVwavelengthcamto moveandstayin thecageposi-
tion. Duringthismode,the SBUVmonochromator,photometer,andreferencechannelssampledata
at onesecondintervalsat 408.8nm.

7.3.3.4 SBUVMode4 (ContinuousScan)

Duringmode4, theSBUVscansfrom 160nmto 400nmsamplingdataat 80millisecondinter-
valsin 0.2nmincrements.Onecompletewavelengthscanin mode4 requiressevenVIPmajorframes
(112seconds).Duringthe first majorframethe SBUVwavelengthcamadvancesto the beginningof
the linearscanregionandthedatasampling(160nmto 400nm)occursduringthenextsix major
frames.

7.3.3.5 SBUVMode5(ScanOff)

Thecommandof mode5 causesthe SBUVwavelengthcammotionto cease.Duringthismode,
theSBUVmonochromator,photometer,andreferencechannelssampledataat one-secondintervals
at thewavelengthdeterminedby thecurrentcamposition.

7.3.3.6 TOMSScannerModes

Thefivescannermodesfor TOMSare: scanoff mode,singlestepmode,normalscanmode,
stowedmode,andviewdiffusermode.

In singlestepmode,thescannerstopsandrespondsto actuationof the momentaryrelaycon-
nectedto theTOMSsinglestepcommandline. In normalscanmode,thescannerscans35positions,
retracesto thefirst sceneandstartsanotherscanof 35scenes.

In stowedmode,thescannerslewsto thestowedpositionandstops.Thismodeisrequiredfor
the TOMSwavelengthcalibration. In viewdiffusermode,requiredin solarspectralirradiancemeasure-
ment,the scannerslewsto theviewdiffuserpositionandstops.

7.3.4 ElectronicSystem

Eachsensormodulehousesadetectorpowersupply,the first stagesof thesignalprocessing,a
calibrationgenerator,andits ownopticalandmechanicalsystems.Thecalibrationgeneratorisa
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constantcurrentsourceusedfor the in-flight electroniccalibration. The electronicsmoduleac-
commodatesall tl,esupportingelectroniccircuitsincludingthedataprocessingandcommandlogic.

TheSBUV/TOMShasfour dataoutput channels:onefor themonochromator,oneeachfor
the referenceandthephotometerfor the SBUV,andonefor the TOMS. Thesignalprocessingis
verysimilarin eachchannel,thoughnot identical.A distinct featurein the SBUV/TOMSdetecting
electronicscomparedto theoriginalNimbus4 BUVexperimentis theuseof theopticalchopperto
eliminatethedarkcurrentcontributionin theoutputby theup/downcountingtechnique.

Thesignaldetectedin the SBUV/TOMSmonochromatorchannelisprocessedasfollowing.
Thechopperopticalsignalfrom the exitslit fallsonthe PMTgeneratinga currentin the detector.
Thischopperdetectorcurrentisamplifiedby themulti-rangeelectrometer.Threeelectrometer
outputsin differentgainrangesarefedto threevoltage-to-frequencyconverters(VFC), respectively.
TheVFCoutputsareroutedthroughthe interfacecableto digitalaccumulatorsin the ELM. The
accumulatoriscontrolledandgatedinsynchronismwith the light choppersoit countsupwhenthe
lightisadmittedto thePMTandcountsdownwhenthechopperblocksthelight. Thusthe accumu-
lator worksasanintegratorandsynchronousdemodulator,andrejectsanyunchoppedsignals.The
accumulateddataarecompressed(for mode4), formatedandsentto theVIP telemetrythrougha
-bufferstorage,Theintegratedperiodis onesecondin stepscanand80millisecondsin continuous
scan.TheSBUVmonochromatorchannelhasthreeparalleloutputs,eachof whichhasfull scale
175,000countsin stepscanmode(14,000countsin continuousscan)andcoversdifferentpartsof
the 106dynamicrangetheSBUVmeasureswith betterthanonepercentresolutionaccuracy.

Thesignalprocessingfor thereferenceandphotometerchannelsis identicalto that for the
monochromatorexceptthat only oneVFCandaccordinglyoneoutput isemployedin eachchannel.
Thedataaresampledin aone-secondperiodandthe outputhasafull scaleof 175,000counts.

TheTOMSalsousestheopticalchoppingandup/downcountingsystemin thesignalprocessing.
EventhoughtheTOMShasfour gainranges,four VFC'sandfour accumulators,only oneoutput is
chosenby theTOMSrangecontrollerandtelemeteredthroughtheVIP. Thehighestgainrangeout-
put amongthe unsaturatedrangesis selectedfor transmission.

TheSBUV/TOMStelemetrysystemusedthreeVIPchannels:digitalA, digitalB,andVIP
analog.ThedigitalA channeltransmitsthesensorydata,statusbitsandhousekeepingdatathat
requireresolutionandaccuracygreaterthancanbeprovidedby analogtelemetry. Statusbits
indicatevariousconditionswithin thesensors.ThedigitalBtelemetryverifiesproperoperationof
commandrelaysor properoperationof circuitsandmechanisms,whichareinitiatedviathe command
relays.TheVIP analogtelemetryconsistsof eleventemperaturesfrom thermistorsandthreeac
powersupplymonitorvoltages.

7.4 Calibration

7.4.1 Prelaunch Calibration

The radiometric calibration of the SBUV/TOMS is composed of three parts: radiance calibra-

tion', irradiance calibration, and system linearity. The SBUV/TOMS measures the ultraviolet solar
irradiance on the top of the earth's atmosphere and the earth radiance due to the solar illumination.

The irradiance measurement mode uses only one additional optical element (diffuser) in instrument-

ation compared to the radiance measurement mode, but quite different calibration techniques are

required. A principal shared in both calibrations is the determination of the instrument response to

a known source. 188



Thespectralrangeof theSBUV/TOMScannotbecoveredby asinglestandardin calibration.
Standardspectralirradianceusedinvariouswavelengthrangeswerethe 1000watt tungstenquartz
halogen,the argonmini arcandthedeuterium(D2)arcwhichwereobtainedfrom theNational
Bureauof Standards(NBS). A standardspectralradiancesourcewhichcan fill the field of view
of the instrumentisobtainedby combiningasirradiancesourcewith areflectivediffuserwhosedif-
fusereflectanceisknown. SeveralfreshcoatedandagedBaSO4 diffuserplatesandonealuminum
diffuserplatehavebeenusedin theradiancecalibration.Thealuminumdiffuserisusedto monitor
thestability of theBaSO4 diffuserreflectance.Thereflectanceof all thediffuserplateshavebeen
measuredperiodicallyat NBS.

Theirradiancecalibrationisachievedbythreeoperations:ambientcalibration,vacuumcalibra-
tion andgoniometriccalibration.Theambientcalibrationincludesthecalibrationrunsin theam-
bient for thewavelengthrangelongerthan200nm. Thetungstenquartzhalogenlampismsedfrom
250nm to 400nmwhiletheargonmini arcanddeuteriumlampareusedfrom 200nmto 250nm.
A vacuumcalibrationwasperformedin anion pumpedvacuumchamberfor thewavelengthrange
from 160nm to 200nmwith anargonmini arc. In theambientandvacuumcalibration,theexper-
imentalarrangementissuchthat the instrumentaxiscoincideswith theverticaldirectionandthe
calibrationsourceilluminatesthecenterof thedeployeddiffuserin thehorizontaldirectionasthe
SBUV/TOMSviewsthesunin theterminator.Thethird operation,thegoniometriccalibration,is
requiredsincetheincidentangleof thesunon the diffuser continuously changes as the satellite

orbits the earth. Therefore, the angular response of the SBUV/TOMS is determined in the gonio-
metric calibration. :

Radiance calibration requires a radiance source which fills the field of view of the instrument.

This is achieved by illuminating a BaSO 4 diffuser in normal incidence with a standard irradiance

source. For the normal incidence, the reflected beam off the BaSO 4 diffuser is nearly Lambertian.

The radiance calibration is carried out by measuring the response of the instrument viewing the

diffuser plate. To ensure the accuracy in radiance calibration, several BaSO 4 and one aluminum dif-
fuser have been used and their reflectance has been measured periodically. The measurement shows

a reproducibility within one percent.

The system linearity test is a necessary complementary part of the prelaunch calibration. The

SBUV/TOMS has a wide dynamic range of operation and the radiometric calibration described above

provides the instrument response only near one signal level. The system linearity test has been com-

pleted by using two different techniques. For the lower part of the dynamic range, the instrument

is held at a fixed distance from a BaSO 4 diffuser plate and views the diffuser. The radiance of the

BaSO 4 plate is controlled by varing the distance from a tungsten quartz halogen lamp to the diffuser
while the response of the instrument is monitored. For the upper part of dynamic range, the output
of the SBUV monochromator channel is compared to that of the reference diode channel which is

assumed to have a linear response. The sun, guided by a heliostat, is used as a source to drive the

SBUV at higher signal level. The solar flux is attenuated by placing uniform neutral density screens

in the light path. The linearity of the lower part of the dynamic range was checked independently

by using a set of standard neutral density filters with a tungsten quartz halogen lamp.

7.4.2 In-flight Calibration

7.4.2.1 Electronics Calibration

The gain stability of the signal processing is checked if electronics calibration (ECAL) is com-

manded in the scan off mode. A precise simulated chopped signal is injected into the input of each
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electrometeramplifieranddataareaccumulatedasin the radiance measurements, Several signal

levels and modulation combinations are automatically sequenced to fully test each electrometer range.

7.4.2.2 Wavelength Calibration

The purpose of in-flight wavelength calibration is to detect wavelengths shifts in the mono-

chromators which could be caused by excessive temperature differentials or mechanical displacement

of the wavelength determining components duo to shock or vibration.

The SBUV uses the same wavelength calibration scheme used by the BUV on Nimbus 4. It

consists of five precise cam steps centered about at 253.7 nm, which is the wavelength of the strong-
est mercury emission line. To perform wavelength calibration, the SBUV wavelength calibration

lamp is warmed up for at least five minutes and the diffuser is moved to the SBUV position. Upon

the wavelength calibration command, the SBUV cam scans through the five steps which are separated

by 0.5 nm, measuring the radiation from the mercury lamp reflected off the diffuse plate. A triangle

is drawn from the output since the spectrometer has a triangular slit fucntion of a 1 nm bandwidth.

Any shift in wavelength is deduced from the position of the peak of the triangle. Table 7-1 fists the

actual wavelengths (ko) for the 12 SBUV steps determined from the ground calibration. The true

wavelengths (Xt) in space will be determined from the in-flight wavelengths calibration using an
equation:

Xt = Xo + (253.725 - ;kp - 0.113)

where Xp is the peak wavelength of the triangle of the output in vacuum. The calibration lamp
spectrum obtained in the continuous scan mode can also provide a wavelength calibration check.

The TOMS in-flight wavelength calibration works on the same pricniple as that of the SBUV,

even though the TOMS has a different wavelength scanning mechanism and uses a different mer-

cury emission line (296.7 nm). The TOMS has four special entrance slits in the wavelength selector

which function as the SBUVcam wavelength steps. Table 7-2 shows the actual wavelengths for the

TOMS from the ground calibration. Any change in wavelength scale can be corrected by using a
formula:

Xt = k o +(296.814 -Xp + 0.120)

where Xt, Xo and Xp have the same meaning as in the SBUV wavelength calibration.

7.5 Data Processing, Formats, and Availability

7.5.1 Data Processing

Figures 7-9a and 7-9b present an overview of the SBUV/TOMS data reduction sequence from

initial processing in the MetOCC through user image generation by the IPD at GSFC. The MetOCC
produces an SBUV/TOMS User Formatted Output (UFO) tape and an Image Location Tape (ILT).

These tapes, together with terrain and THIR cloud information are used by SACC at GSFC to pro-

duce the tapes described in Section 7.5.2. SACC sends these tapes to the IPD. IPD copies some

and sends these copies to NET users. IPD uses other tapes (as shown in Figure 7-9b) as input to
generate the SBUV/TOMS microfilm and montage displays described and listed in Section 7.5.3.

All original tapes and microfilm are then sent to NSSDC for archiving. NSSDC makes copies of these
products for users.
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Table7-1

ActualWavelengthsof SBUVWavelengthSteps

WavelengthStep(nm) PrelaunchActualWavelength(nm)

339.8

331.2

317.5

312.5

305.8

301.9

297.5

292.2

287.6

283.0

273.5

255.5

339.871

331.240

317.540

312.544

305.851

301.951

297.565

292.268

287.681

283.078

273.587

255.631

NOTE: Actualwavelengthinspacecanbedeterminedfrom inflight wavelength
calibrationusingthefollowingequation:

Xt (nm) = Xo +(253.725- Xp- 0.113)

whereXt is true wavelength,Xo prelaunchwavelength,andXpthepeak
wavelengthfrominflight wavelengthcalibration.Theterm of 0.113nm
appearsbecausethe wavelengthstepsarenot centeredexactlyat 253.725
rim.
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Table7-2

ActualWavelengthsof TOMS

WavelengthsStep(nm) PrelaunchActualWavelength(nm)

380.0

360.0

339.8

331.2

317.5

312.5

NOTE:

379.956

359.904

339.803

331.195

317.454

312.456

Actualwavelengthin spacecanbedeterminedfrom inflight wavelength
calibrationusingthe followingequation:

Xt (nm)= Xo + (296.814- Xp+ 0.120)

whereXt is truewavelength,_oprelaunchwavelength,and_kpthepeak
wavelengthfrom inflight wavelengthcalibration.Thetermof 0.120nm
appearsbecausethewavelengthstepsarenot centeredexactlyat 296.814
nm.
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7.5.2 Tape Products

The following tape products are produced by SACC and used by IPD before being sent on to

NSSDC for archiving. Brief descriptions of these tapes are a_ follows:

• RUT-S (Raw Units Tape for SBUV)

Contains the most elementary and complete form of the SBUV data. Each tape record

contains one of four formats depending on the instrument operating mode. Each record

contains essentially the same solar satellite and earth reference data, plus housekeeping
data. The number and type of monochrometer and photometer values included in each

record type is determined by the instrument mode.
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RUT-T (RawUnitsTapefor TOMS)
Containsthemostelementar2¢andcompleteformof theTOMSdata. It containssolar,satel-
lite, andearthreferencedata,plushousekeepingdata. It alsocontainstheTOMSradiance
valuesat specifiedwavelengthsfor eachIFOV alongeachorbit.

• OZONE-S(SBUVOzoneTape)
ContainsSBUVhigh-levelozoneprofilesandtotal atmosphericprofiles.

• OZONE-T(TOMSOzoneTape)
ContainsTOMStotalozoneprofiles.

ZMT(ZonalMeansTape)
Containsin computer-compatibleformatall SBUVandTOMSof wavelengths,solarirradi-
ances,high-levelozonemassmixingratios,andtotal ozonevalues.

TABLES(all SBUV/TOMStablesfor microfilmdisplay)
ContainsSBUVandTOMSdataformattedfromproductionof all tablesonmicrofilm(See
Section7.5.3for film examplesof thesetables.)

MATRIX (MapDataMatrixTape)
Contains daily, monthly and three month world grids of both SBUV and TOMS data plus

northern and southern hemisphere polar stereographic map matrices containing the contour
values of the parameters to be displayed on microfilm. These tapes also contain SBUV cross-

section records of contour values, and SBUV plots to be on microfilm displays. Each re-

cord contains all necessary reference and title information needed for annotation of each of
these displays. (See Section 7.5.3 for film examples of these.)

MONTAGE (Montage Tape for TOMS)
Contains all TOMS data and all title and reference information needed for annotation and

display of each TOMS one--day montage. (See Section 7.5.3 for a film example of this.)

The form and content of each of these tapes is specified in a tape specification document for

each tape type. The appropriate document will accompany a tape shipment to a user. See Section
1.5 of this document for details.

7.5.3 Display Products

The SBUV/TOMS data are displayed on 18 different map sets, one cross section, 18 tables,

three plots, and one montage. TOMS and SBUV are co.ntoured and displayed as total ozone maps.

(See Figure 7-10 for an example.) SBUV data is also contoured and mapped at 14 high-altitude
pressure levels. (See Figure 7-11). The orbital high-level SBUV values are also presented in a cross-

section format (Figure 7-12). There are SBUV tables of solar irradiances (Figures 7-13 and 7-14),

total ozone (Figure 7-I 5), and high-level ozone mass mixing ratio (Figure 7-16). There is one
TOMS table showing total ozone (Figure 7-17). The three plot displays (Figures 7-18, 7-19, and

7-20) show SBUV values of solar irradiance, terrestrial radiance, and terrestrial albedo, respectively,

The TOMS data are also presented in one-day montages showing each orbital swath of total ozone

as shades of gray. (Figure 7-21).

Table 7-3 fists the titles of all SBUV/TOMS microfilm and montage displays and the correspond-

ing film specification number for each. Most parameters are produced at more than one time scale
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Table7-3

SBUV/TOMSFilm Products

Film Spec
Number

633101

633701

633801

633102

633702

633802

633103

633703

633803

634030

632140

636060

636161

636561

636761

636861

636162

636562

636762

636862

636163

Film ProductTitle

TOTALOZONE(TOMS)

MAPS

TOTAL OZONE (SBUV)

OZONE MASS MIXING RATIO AT XX.X* MB (SBUV)

CROSS SECTIONS

HIGH LEVEL X-SECTIONS OF OZONE MASS MIXING RATIO

MONTAGE

TOTAL OZONE MAPPING SPECTROMETER DAILY MONTAGE OF DAY-

TIME DATA FOR (date)

TABLES

SOLAR IRRADIANCE IN XX ANGSTROM STEPS BETWEEN 1600A AND

4000A

TOTAL OZONE (TOMS Zonal means)

TOTAL OZONE (SBUV Zonal means)

HIGH LEVEL OZONE MASS MIXING RATIO (SBUV Zonal means)
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Table7-3 (Continued)

Film Spec
Number

636563

636763

636863

636764

637780

637781

637782

Film ProductTitle

SOLARIRRADIANCEIN 10ANGSTROMSTEPSBETWEEN1600A
AND4000A

PLOTS

PLOTSOFTHERATIOOFORBITALMEASUREMENTSOF SOLAR
IRRADIANCETOTHE27DAY MEAN

PLOTSOFTERRESTRIAL RADIANCE VS WAVELENGTH

PLOTS OF TERRESTRIAL ALBEDO VS WAVELENGTH

*The maps for each time period showing SBUV high-level ozone mass mixing ratios are con-

toured and displayed at 14 pressure levels. These are: 40, 30, 20, 15, 10, 7, 5, 4, 3, 2, 1.5, 0.7,
and 0.4 millibars.
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KM MB ORBIT 00928 ME

1.0

3ot-

30 30

20"--
too I zoo

NAG LAT XXS XX XXS XXS XXS XXS XXN XXN
NAG LON XXXE XXXE XXXW XXXW XXXW XXXIW XXX'd XXXW XXXW XXXW XXXW
SOL. ZEN 90 37.0 7473.4 -54.3 18 7 19 38 54 90

KM MB ORBIT 00929 MB

L601---

0.3 _--_ _ _" ...... 0.3
2

50 I'- _ "_
1 4 1.0

6

3.0 3.0

IOl-- B 10 .-.10 10

301-- 30 _-- _ 30

20L-- 100-- 100
S.P.GMT
GEO LAT Xlll Xlll Xlll Xlll Xll_ Xlll Xlll Xlll Xlll Xl_ X_l
GEO LON XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
NAG LAT XX XX XX XX XX XX XX XX XX XX XX
NAG LON XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
SOL. ZEN XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

UNITS CONTOUR INTERVAL LOWER CONTOUR LIMIT UPPER CONTOUR LIMIT

SBUV HiGH LEVEL X-SECTIONS OF OZONE MASS MIXING RATIO 19 DEC 7!
NIMBUS 7 ORBITAL DISPLAYS ORBITS 00928 AND 00929

T XXXXX ALGO XXX F6_O_O FA XXXXXX

Figure 7-12 SBUV Microfilm Cross Section Format of Ozone Mass Mixing Ratio
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SOLAR IRRADIANCE IN 02 ANGSTROM STEPS BETWEEN 1600A AND 4000A
ONE ORBIT MEASUREMENTS

SBUV 12AUG80

NIMBUS 7 ORBIT 09931

GMT
SCAN START 142629
SCAN STOP 142805

LATITUDE LONGITUDE SOLAR AZ SOLAR ZEN
79.855 131.6W 124 78
76.355 171.5W 119 76

WAVELENGTH (_) IS IN ANGSTROMS
IRRADIANCE (F) IS IN W/M*2 XIO-12

WAVELENGTH SPAN ON THIS PAGE FROM 1600A TO 2400A

F F F F F
1601 XXX 1681 XXX 1781 XXX 1841 XXX 1921 XXX
1603 XXX 1683 XXX 17 3 XXX I_43 XXX Iq23 XXX

F F F F F
2001 XXX 2081 XXX 2161 XXX 2141 XXX 2321 XXX
2_03 XXX 2N_3 XXX 21fi3 XX_ 2143 XXX 237_ XXX

,Id
1677 XXX 1777 XXX 1837 XXX 1917 XXX 1977 XXX

1679 XXX 1779 XXX 1839 XXX 1919 XXX 1999 XXX

2077 XXX 2157 XXX 2237 XXX 2317 XXX 2397 XXX
2079 XXX 2159 XXX 2239 XXX 2319 XXX 2399 XXX

TXXXXX ALGO XXX F636060 FBXXXXXX

Figure 7-13 SBUV Microfilm Table Format of Solar Irradiance
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SOLAR IRRADIANCE IN 10 ANGSTROM STEPS BETWEEN 1600A AND 4000A
(27 DAY MEANS AT ONE A.U.)

SBUV BARTELS NUMBER
NIMBUS 7 2004

OIAUG80 THRU 27AUG80
ORBITS 09776 THRU 10148

SOLAR AZIMUTH ANGLES AT SATELLITE
DAY OIAUG 07AUG 14AUG 21AUG 27AUG
ANGLE XXX XXX XXX XXX XXX

WAVELENGTH (A) IS IN ANGSTROMS
IRRADIANCE (F) IS IN W/M*2 XIO-12

WAVELENGTH SPAN ON THIS PAGE FROM 1600A TO 2800A

CNTR MEAN STD MAX MIN
F DEV VAL VAL

1605 XXX XX XXX XXX
1615 XXX XX XXX XXX

CNTR MEAN STD MAX MIN
F DEV VAL VAL

2005 XXX XX XXX XXX
2015 XXX XX XXX XXX

CNTR MEAN STD MAX MIN
F DEV VAL VAL

2405 XXX XX XXX XXX
2415 XXX XX XXX XXX

1985 XXX XX XXX XXX 2385 XXX XX XXX XXX
1995 XXX XX XXX XXX 2395 XXX XX XXX XXX

2785 XXX XX XXX XXX
2795 XXX XX XXX XXX

TXXXXX ALGO XXX F636764 FBXXXXXX

Figure 7-14 SBUV Microfilm Table Format of Solar Irradiance
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SBUV

NIMBUS 7

GEODETIC
LATITUDE

ZONE
(CENTER)

80N
70N
60N
50N
40N
30N
20N
ION
0

IOS
20S
30S
40S
502
60S
70S
80S

TOTAL OZONE
ONE MONTH ZONAL MEANS

OIAUG80 THRU 31AUG80
ORBITS 09776 THRU 10204

TOTAL OZONE
MEAN STD POP

(M-ATM-CM) DEV FLAG
XXX XX.X *
XXX XX.X *

XXX XX.X *

GEOMAGNETIC

LATITUDE

ZONE
(CENTER)

80N
70N
60N
50N
40N
30N
20N
ION

0
lOS
20S
30S
40S
50S
60S
70S
80S

TOTAL OZONE
MEAN STD POP

(M-ATM-CM) DEV FLAG
XXX XX.X *
XXX XX.X *

XXX XX.X *

TXXXXX ALGOXXX F636767 FBXXXXXX

Figure 7-15 SBUV Microfilm Table Format of Total Ozone

as Table 7-1 shows. Interpreting the fourth digit from the left in each specification number gives
the frequency of production of the parameter listed in the title:

XXXOXX

XXX 1XX

XXX5XX

XXX7XX

XXX8XX

= produced orbitally, or more often,
= produced every day,

= produced every seven days,

= produced every month (or 27 days equalling one Bartel
period), and

= produced every three months.

All map displays contain one north and one south polar stereographic projection (pole to equator

for each). Each map contains contoured data as specified in the display title. Immediately beneath
the maps is contouring information giving the contour units, interval between contour lines, and

the maximum and minimum value contoured. All map displays contain an indicator of the quantity

of data within a display. On the one day display there is a "missing orbits per day" code specifying
how many orbits of data are missing from that day's input to the map (See Figure 7-10). On the

one month and three month maps (Figure 7-11 ) there is an "on-off cycle" scale specifying the

days during the display period when the instrument was on and off. If a day on the scale is "filled

in" the instrument was on, the data was collected, interpreted, and used in the contouring. If a day
is not filled in, the instrument was either off or the data was unuseable for some reason.

The polar stereographic maps on the one day displays (Figure 7-10 is an example) contain
"dot tracks" with each dot representing a target point data value location used to construct the

203



HIGH LEVEL OZONE MASS MIXING RATIO (PPM)
ONE DAY ZONAL MEANS

SBUV 12AUG80

NIMBUS 7 ORBITS 09928 THRU 09942

GEOMAGNETIC PRESSURE LEVELS
LATITUDE 40 MB 39 MB 20 MB 15 MB lO MB 7 MB
OZONE STD STD STD STD STD STD

(CENTER) MEAN DEV POP MEAN DEV POP MEAN DEV POP MEAN DEV POP MEAN DEV POP MEAN DEV POP
80N
70N
60N
50N
40N
30N
20N
ION
0
IOS
20S
30S
40S
50S
60S
70S
80S

XXX XX.X XXX XXX XX.X XXX XXX XX X XXX XXX XX.X XXX XXX XX.X XXX XXX XX

5 MB
s_

_a_ D_ POP
x xxx_x%x_ ,X_

XXX XX,X XXX XXX XX.X XXX XXX XX.X XXX XXX XX.X XXX XXX XX.X XXX XXX XX.X XXX_'LX_L_ %_X

GEOMAGNETIC PRESSURE LEVELS
LATITUDE 4 MB 3 MB 2 MB 1.5 MB l MB
OZONE STD STD STD STD STD STD

(CENTER) MEAN DEV POP MEAN DEV POP MEAN DEV POP MEAN DEV POP MEAN DEV POP MEAN DEV POP
80N
70N
60N
50N
40N
30N
20N
ION
0

IOS
20S
30S
40S
50S
60S
70S
80S

XXX XX.X XXX XXX XX X XXX XXX XX.X XXX XXX XX.X XXX XXX XX.X XXX XXX XX

0.4 MB
S_

• _ DeY_"r_
X XXX x/,_ _Y,Y,XY,X

XXX XX.X XXX XXX XX.X XXX XXX XX.X XXX XXX XX.X XXX XXX XX.X XXX XXX XX.X XXX)_W,__.% _y_

TXXXXX ALGO XXX F636163 FBXXXXXX

Figure 7-16 SBUV Microfilm Table Format of High Level Ozone Mixing Ratio

204



TOMS
NIMBUS 7

GEODETIC

LATITUDE

ZONE

(CENTER)
POLE

80N

75N

70N

65N

60N
55N

50N

45N

40N

35N

30N

25N

20N

15N

ION

5N
0

5S
lOS

15S

20S

25S

30S

35S

40S

45S

50S

55S

60S

65S

70S

75S

80S

POLE

TOTAL OZONE
ONE MONTH ZONAL MEANS

TOTAL OZONE

MEAN STD POP

(M-ATM-CM) DEV FLAG
XXX XX.X *

XXX XX.X *

XXX XX.X

GEOMAGNETIC
LATITUDE

ZONE
(CENTER)

POLE

80N

75N

70N

65N

60N

55N

50N

45N

40N

35N

30N
25N

20N

15N

ION

5N

0

5S

lOS

15S

20S

25S

30S

35S

40S

45S

50S

55S

60S

-65S
70S
75S
80S

POLE

OIAUG80 THRU 31AUG80

ORBITS 09776 THRU I0204

TOTAL OZONE
MEAN STD POP

(M-ATM-CM) DEV FLAG
XXX XX.X *
XXX XX.X *

XXX XX.X *

TXXXXX ALGO XXX F636761 FBXXXXXX

Figure 7-17 TOMS Microfilm Table Format of Total Ozone
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STOP 052258 70.2S 65.1E 121
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A
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C

E 10_!q
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TO0000 ALGO00 FA37780 FAO00000

Figure 7-18 SBUV Microfilm Format of Solar lrradiance Plots
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I I i | | | I I I I I |
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I I I I I I I I I I I I

ABSCISSA VALUES
ABSCISSA TITLE
LABELS
START INFO
STOP INFO
ORBIT AND DATE INFO

SBUV
NINBUS 7

PLOTS OF TERRESTRIAL RADIANCE VS WAVELENGTH 12 AUG 80
ORBITS 09991 AND 09992

TO0000 A°_GO 0o0 F637781 FAO00000

Figure 7-19 SBUV Microfilm Format of Terrestrial Radiance Plots
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NIMBUS 7

PLOTS OF TERRESTRIAL ALBEDO VS WAVELENGTH 12 AUG 80
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Figure 7-20 SBUV Microfilm Format of Terrestrial Albedo Versus Wavelength Plots
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contours on the maps. The dots also represent the subpoint tracks and, together with the orbit num-

bers given as reference in the lower right corner, they can be used to assign orbit numbers to each

track. The labeling adjacent to each map "first orbit A.N. Zone..." plus the horizontal lines over

to each maps equator circle define the longitudinal zone of the ascending node (A.N.) of the first or-

bit given as reference in the lower right. Orbit numbers then increase clockwise (CW) on the left map

(northern hemisphere) and the same orbit numbering increases counterclockwise (CCW) on the right
map.

Figure 7-12 is an example of the SBUV orbital cross section displays. Two orbits are on each

display. Data are referenced vertically by pressure and standard atmosphere altitudes, and horizon-

tally at 11 locations by satellite subpoint values of GMT, geocentric and geomagnetic latitudes and

longitudes (GEO LAT, GEO LON, and MAG LAT, MAG LON), and solar zenith angle (SOL ZEN).

Examples of the SBUV/TOMS tables on microfilm are shown in Figures 7-13 through Figure
7-17.

The SBUV plots on microfilm are shown in Figures 7-18, 7-19, and 7-20.

Figure 7-21 illustrates the format for the TOMS montage. The individual swaths of TOMS data

are electronically stored until a day of data is assembled. Then the data is exposed on 241 mm by
241 mm (9.5 inch) black and white film as a TOMS world montage. The format and reference fidu-

cial are identical to the daytime THIR montages (see Section 9.4.1 ) so that the THIR cloud data can
be compared with the TOMS ozone data.

Each display contains appropriate title information identifying the satellite, the experiment, and
the date the data was recorded. The 13 or 14 orbits of data are in the center of each display with a

reference fiducial on the left and right. Beneath each orbital swath is its data orbit number plus an

ascending node longitude (AN LON) and ascending node Greenwich Mean Time (AN GMT).

Beneath the data orbit reference information is a nine-step gray scale. The gray scale is calibra-

ted in milli-atmosphere-centimeters (M-ATM-CM) and allows a user to estimate this quantity within

each data swath. If all of a swath is calibrated with one range of M-ATM-CM values, only one set of

numbers appears beneath the gray scale. However, if it is shown that data near the equator should be

enchanced, then a second range of values is shown. The second (bottom) range is for all data within

certain latitude limits north and south of the equator (USE BETWEEN XX ° N and XX ° S). The first
(top) range is for all data beyond these latitude limits (USE BEYOND XX ° N and XX ° S).

Title and reference information at the bottom on all displays is mostly self-explanatory. The

right half of the last line, however, requires explanation. This information is mainly used for catalog-
ing and information control. These items are: the physical tape number the data is stored on (TXX

XXX), the algorithm reference number used in processing the data (ALGO XXX), the film specific-

ation number (F63XXXX), the Project Data Format Code (FA, FB, or FC), and the film frame num-
ber (XXXXXX).

7.5.4 Data Availability

The SBUV/TOMS experimental data consisting of the magnetic tapes described in Section 7.5.2

and the 16 mm microfilm and 241 mm montage displays listed and illustrated in Section 7.5.3 are
archived at the NSSDC. It is anticipated the first data sets will not arrive at NSSDC until at least six
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monthsafter launch.UsersrequestingSBUV/TOMSdatashouldreadSection1.5of thisdocument
for generaltapeandfilm orderinginformation.
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b) "Requirement Specifications for Nimbus-G SBUV/Vertical Ozone profile (R-S AB
6178-66)",

c) "Requirement Specifications for Nimbus-G TOMS Ozone Algorithm (R-SAD 12/77-

35)", all prepared for National Aeronautics and Space Administration by Systems and Ap-

plied Sciences Corporation, Riverdale, Maryland.
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SECTION 8

THE SCANNfNG MULTICHANNEL MICROWAVE RADIOMETER (SMMR) EXPERIMENT

by

Dr. Per GloersOn

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, Maryland 20771

and

Len Hardis

OAO Corporation
50/50 Powder Mill Road

Beltsville, Maryland 20705

8.1 Introduction

The Scanning Multichannel Microwave Radiometer (SMMR) was conceived in order to obtain sea

surface temperature and near-surface winds, two very important parameters required by oceanogra-

phers for developing and testing global ocean circulation models and other aspects of ocean dynamics

(Reference 26). The design was based on experience gained from a wide variety of experiments car-

ried out in the laboratory, in the field, on board aircraft, and on board spacecraft using microwave

radiometers over a wide wavelength range.

Several microwave radiometers have flown on previous Nimbus satellites. The Electrically Scan-

ned Microwave Radiometer (ESMR) operated at i.55 cm wavelength on Nimbus 5 and at 0.8! cm on

Nimbus 6, and provided very useful surface observation data. The Nimbus E Microwave Spectrom-

eter (NEMS) on Nimbus 5 and the Scanning Microwave Spectrometer (SCAMS) on Nimbus 6 were

significant atmospheric-observing experiments. Much of the radiometer hardware technology devel-
oped for the NEMS and SCAMS was directly applied to the SMMR. The earliest attempt at the

SMMR concept was the Passive Multichannel Microwave Radiometer (PMMR) proposed for the Earth

Observatory Satellite (Reference 27). That instrument consisted of ten channels, similar to SMMR,

and utilized phased arrays as antennae.

Earlier work (References 1 and 4) has demonstrated that variations of sea surface wind give rise

to variations in the observed microwave brightness temperatures - even at wind speeds of less than

seven meters per second where foam is not present. More recently, the spectral nature of this varia-

tion has been studied (Reference 5) and found to be separable from microwave brightness tempera-

ture changes caused by atmospheric and sea surface temperature variations (Reference 6). These
studies provide the basis for extracting sea surface winds and temperatures from the SMMR data.

Other geophysical parameters are extracted from the SMMR data. These include: sea ice par-
ameters, a mesoscale soil wetness index, snow accumulation rates over continental ice sheets, subsur-

face physical temperatures in snow cover, and atmospheric parameters over open ocean water of total

water vapor, total non-precipitating liquid water, and rainfall rate.

2,3 Precedingpageblank



The SMMR channel wavelengths are centered at 0.8 cm, 1.4 cm, 1.7 cm, 2.8 cm, and 4.6 cm.
Polarization components of the microwave radiation are extracted for each channel. The smallest cell
resolution is about 20 km for the 0.8 cm channel.

8.2 Scientific and Technical Objectives

The scientific objectives of the experiment are to:

• Extract geophysical parameters from the multispectral microwave radiances

• Verify the extraction algorithms

• Utilize the extracted parameters in climate modeling and assessment

• Support ongoing and new operational maritime uses (Fleet Weather Facility-USN/FWF,
Fleet Numerical Weather Control-FNWC)

• Identify new observables

8.3 Instrument Description

The SMMR is a ten-channel instrument delivering orthogonally polarized antenna temperature
data at the five microwave wavelengths indicated in Table 8-1. A simplified block diagram is shown

in Figure 8-1. A summary table of sensor design characteristics is given in Table 8-2.

Six conventional Dicke-type radiometers are utilized. Those operating at the four longest wave-

lengths measure alternate polarizations during successive scans of the antenna; the others, at the

shortest wavelength, operate continuously for each polarization. A two-point reference signal system
is used, consisting of an ambient RF termination and a horn antenna viewing deep space. A switch-

ing network of latching ferrite circulators selects the appropriate polarization or calibration input for
each radiometer.

The most novel feature of the instrument is the antenna subsystem: A 42--degree offset-parabolic

reflector focuses the received power into a single feedhorn covering the entire range of operating
wavelengths provides coaxial antenna beams for all channels.*

The design of the feed utilizes a ridge-loaded corrugated conical horn with peripheral slot coup-
lers, mode transducers, and filters. Scanning is achieved by oscillating the reflector about an axis co-

incident with the axis of the feedhorn. The instrument is installed on the spacecraft in such a manner

that this axis is parallel to the local vertical, resulting in a conical scan pattern with the angle of inci-

dence constant on the surface of the earth near 50 degrees. The reflector is supported on a hexapod

attached to a ring surrounding the feedhorn. This ring, in turn, is supported on three peripheral roll-

er bearings and is driven through two cogged belts by a preprogrammed servo system with position
and velocity feedback, The entire mechanism is caged during launch; release is by redundant pyro-
technic devices.

*Mr. C. R. Loughlin (GSFC) and Dr. Kurt Richter (as a NAS Fellow at GSFC) collaborated on a design study for a
Passive Multichannel Microwave Radiometer (PMMR). They developed a single antenna dish receiver concept for
the PMMR design. This design was adapted to SMMR and was a key factor in making SMMR accepted as part of
the Nimbus payload.
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Table 8-2

SMMR Sensor Design Characteristics

Item Characteristics

Detectors: RF diode - Dicke - Superheterodyne

Size:

Weight:

Power:

Commands:

Data:

Telemetry:

Clock:

Two 15.3- by 33.0- by 20.4-cm modules (two Nimbus bays)

One 15.3- by 16.5- by 20.4-cm module (one-half Nimbus bay)

Parabolic section antenna, 80 cm in diameter

Multifrequency antenna feed

52.3 Kg

60 Watts

12

DAPS - 2 kbs(i )

Digital B - 9(2)

Analog - 19

Time code

Strobe

1 Hz

10 kHz

1.6 MHz

(1) Nimbus 7 data processing

(2) Lower data rate in DAPS for collecting digital words
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Theremainderof the instrument,includingtheradiometers,controlelectronics,powersupply,
dataandprogrammersubsystems,isaderivativeof theNimbus5 NEMSandNimbus6 SCAMSin-
strumentswith minormodificationsto takeadvantageof improvedstate-of-the-art-components.

Physically,theSMMRinstrumentconsistsof fivehardwareelements:

• The antenna assembly consisting of the reflector, fabricated of graphite epoxy, and the feed-
horn

• The scan mechanism, including momentum compensation devices

• An RF module containing the input and reference switching networks, the mixer-IF pream-

plifiers, and the Gunn local oscillators

• An electronics module containing the main IF amplifiers, all the post-detection electronics,

and the power supplies for the scan and data subsystems

• A power supply module which contains the dc-to--dc converters and regulators for the rest
of the instrument

The antenna, scan mechanism, RF module, and sky horn cluster are mounted on a bridgelike

platform which is then installed as a preassembled, aligned and calibrated unit on the spacecraft. The

electronics and power supply modules are mounted separately and are cabled to the instrument and

spacecraft through connectors. Figures 8-2 through 8-5 contain various views of the instrument. Its
overall size can be visualized by noting that the elliptical antenna reflector is approximately 110 cm x

80 cm. Total instrument weight is about 50 kg, its power consumption 60 watts, and its digital data

output rate 2 kbs.

On Nimbus 7, the SMMR scan pattern is forward viewing and scans equally (see Table 8-1) to
either side of the orbital track so the swath is centered on that track. With a subsatellite velocity of

about 6.5 kilometers per second and a scan period of 4.096 seconds, overlap coverage is provided at
all wavelengths.

To conserve power, the scan is sinusoidal. Part of the time spent at the scan extremeties is util-
ized for reading the radiometer internal and space horn references. The dwell time of all the SMMR

channels are integral multiples of and synchronous with the 0.81 cm channel dwell time of 32 ms.

Concurrent dwell time facilities multispectral data analyses on various geometric scales.

Conversion of the raw radiometric readings to microwave brightness temperatures involves cor-

recting for actual antenna patterns, including sidelobe effects, as well as separating out the horizontal

and vertical polarization components of each of ten channels of radiometric data. These equations
will be available after launch.

8.4 Calibration

8.4.1 Prelaunch Calibration

The instrument is calibrated by the following equation for each wavelength and polarization:
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Figure 8-3. SMMR Instrument Showing Front View 
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TAi = ai00+ai01 (TI-T10)+ai02 (TI-T10)2 +ail0N+aill(TI-T10)N+'"+ail2(TI-T10 )2N (1)

where aij K will be supplied by launch based on thermal-vacuum chamber and laboratory tests and

updated after launch during the validation period,

i = 1 through 10 (radiometer channel number)

T A is the total brightness temperature, uncorrected for polarization mixing and sidelobes

T I is the instrument temperature

T10 is a mean, or convenient intermediate value of N

N - CA - CH is the normalized counts
CC - CH

C A is the digital counts from the radiometer, when viewing the earth

CC is the digital counts from the radiometer, when reading the space horn

CH is the digital counts from the radiometer, when reading internal warm surface

8.4.2 Post-launch Calibration

After launch, the prelaunch constants (Equation 1) will be updated by checking against earth

targets of known properties - open, calm sea water with clear skies or light clouds, and consolidated

first-year sea ice. The T B's will be verified by comparsion with T B's obtained with an airborne radi-

ometer with all SMMR channels during Nimbus 7 underflights. The underflights are particularly

important, since extrapolation from the laboratory cold reference of 100°K to the postlaunch value

of 30°K cannot be done with complete confidence.

8.5 Operational Modes

The SMMR has been constrained to a 50 percent duty cycle due to spacecraft power limitations.

This duty cycle is achieved by operating on alternate days. Even so, the SMMR maps the entire earth

every six days. The overlap resulting from 100 percent duty cycle is absent, and the interval between
observations of a given point is increased as a result of the 50 percent duty cycle operations.

The "alternate-day" operating pattern must be maintained throughout the lifetime of the

SMMR to ensure the integrity of the time series analyses of the data. Should extra observing time be

made available (i.e., short periods of 100 percent duty cycle), care must be taken to return to the ori-

ginal alternate day schedule at the end of the 100 percent duty cycle period.

8.6 Data Processing, Formats, and Availability

8.6.1 Data Processing
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ThroughouttheSMMRdataprocessingsystem,a modularsoftwaredesignisplannedin orderto
facilitateprogramchangesand algorithmrefinementduring the instrumentvalidationphase.The
manygeophysicalparametersarederivedfrom linearcombinationsof thetenmeasuredradiances,or
functionsof theradiances.Theinitial algorithmssuppliedduringthe prelaunchperiodarebasedon
dataacquiredin a seriesof flight measurementswith aSMMRsimulatorflown on theCV-990air--
craftwith correlativesurfacetruth, ondatafromothermicrowaveradiometers(i.e.,Nimbus5 and6)
andon theory.Mostof theprelaunchanalysesandfield expeditionsoutlinedin Section8.7dealwith
thedevelopmentof keyalgorithms.Theschedulefor their developmentreflectstheamountof ana-
lysiseffort neededfollowingcompletionof therequiredCV-990flights.

TheSMMRdatastreamprocessinghasbeenseparatedinto threedistinct categories.Theinitial
flightdataarereceivedby theMeteorologicalOperationsControlCenter(MetOCC).Figure8-6 con-
tainsthe flow chartfor thedataprocessingperformedin theMetOCC.

Theuserformattedoutput tapefrom MetOCCis then tranferrredto and processedby the
ScienceandApplicationsComputerCenter(SACC).SACCderivestherequiredgeophysicalparam-
etersfrom theradiometricdata.

Thealgorithmsnecessaryfor theseconversionsarepresentlyin variousstagesof development.A
list of thesealgorithmsisgivenin Table8-3. It shouldbenotedthat all constantsusedin the algor-
ithmsaresubjectto revisionin thepost-launchperiod. TheSMMRflow chartsfor dataprocessingat
SACCaregivenin Figures8-7 through8-13.

FROM SPACECRAFT

DEHUX
STRIPS SPACECRAFT DATA STREAH INTO

SEPARATE INSTRUMENT RAW DATA TAPES

DECOMHUTATE

CORRECT

&

EDIT

CONTAINS RADIOMETRIC & HOUSEKEEPING
DATA PLUS TIME CODE

FORMATS RAW DATA INTO COMPUTER COMPATIBLE

TAPE, CHECKS FOR MISSING OR SPURIOUS BITS,
CORRECTS OBVIOUS ERRORS, CHECK SYNC WORDS

AND WRITES DATA BIT WORD.

UFO TAPE IS SUPPLIED TO SACC

Figure 8-6. SMMR Data Processing Flow Chart in the Meteorological Operations Control Center
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Table8-3
SMMRScienceAlgorithms

Algorithm

A°

B°

C.

Ocean

1. Sea Ice Temperature

2. Sea Surface Wind Speed
3. Atmospheric Water Vapor

4. Atmospherio Liquid Water
5. Rain Rate

Sea Ice

1. Ice Concentration

2. Ice Surface Temperature

3. Muttiyear Ice Fraction
4. Thin First Year Ice Fraction

5. Temperature Difference
Between Thick and Thin Ice

6. Atmospheric Contribution

Land

1. Rain (Yes/No)

2. Soil Wetness Index

3. % Open Water Over Land

4. Land Surface Temperature

D° Snow

1. Dry Snow (Yes/No)
2. Snow Layer Water Equivalent

3. Snow Surface Temperature

4. Snow Sub-surface Temper-
ature.

E. Ice Sheet

1. 1.7cm0.6T V-T H

2. 2.8 cm 0.6 T v -Ttt
3. Surface Temperature

4. Sub-surface Temperature

Status

Delv'd Due Open

X

X

X

X
X

X
X

X

1

1

X

X

X

X

5

5

2_

3,

3,

,

3,

3,

3,

Remarks

1 Algorithm approach delivered.

However, mathematical model stu-
dies have shown results to be

"noisy" based on constants that are
on hand. The algorithm is being
"fine-tuned" and the constants re-

evaluated.

2 A post-launch algorithm devel-

opment effort contingent on suffi-
cient A/C flight time to obtain

satisfacto._, ground tpath data.

3 A tentative functional form may

be delivered at launch with highly

preliminary constants for initial

research purposes.

4 Considered a possible post launch

algorithm effort. Contingent upon

funds to perform snow underflights.

5 Results from comparison of re-

cent A/C data with mathematical
model shows that the model has

anomalies. Because of higher prior-

ity of algorithms B-4 and B-5, ef-

fort has been held in abeyance.
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PARM - PARAMETER

LO - LAND/OCEAN

SS - SNOW FIELD, ICE SHEET,

SEA ICE

30 - HIGH RESOLUTION DATA,
ALL PARAMETERS

Figure 8-7. SMMR Data Processing Flow Chart
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Figure 8-8. SMMR Data Processing Flow Chart

For the purpose of obtaining brightness temperatures (T B's) corrected for polarization mixing

and sidelobes from the antenna temperatures (T A's), and for the processing algorithms for the various
geophysical parameters, the T A's from the IFOV's are remapped into four different equal-sized square
cells. All but the 4.6 cm channel are in the 97.5 km cells, all but the 4.6 and the 2.8 cm channels are

in the 60 km cells, and only the 0.8 cm channel is in the 30 km cells. The cells serve to take advan-

tage of the overlap in IFOV's to give lower TBrms values than those in Table 8-1. Thus the spatial
resolutions peculiar to a given geophysical parameter retrieval depends on which SMMR channels are

uti!ized in that retrieval. The data processing flow charts for the generation of the parameter tapes
are shown in Figure 8-12.

To complete the process in SACC, the parameter (PARM) tapes are processed by using map ma-

trix information on discs to generate matrix tapes. These matrix tapes contain the color coding for

any parameter at each located (latitude and longitude) grid intersection. The data stream processing
for this phase is shown in Figure 8-13.

The Information Processing Division (IPD) at GSFC then receives the matrix tapes, merges them
with MAP tapes, and produces the final color image products as shown in the right half of Figure 8-
13.

8.6.2 Tape Products

The following tapes are produced by SACC and used by IPD before being sent to the NSSDC for

archiving. Brief descriptions of these tapes are as follows:

• TAT (Antenna Temperature Tape)

Contains calibrated antenna temperatures and earth locations for each IFOV for each polari-
zation. Also contains ephemeris, attitude, and SMMR housekeeping information. This is
the most basic form of the SMMR data available to users.

• CELL-ALL

CGntains horizontal and vertical polarization brightness temperatures and seasonal geogra-
phic filters for each of the five channels at i 50 km resolution (as discussed in Section 8.6.1),

for all but the 4.6 cm channel at 97.5 km resolution, for all but the 4.6 cm and 2.8 cm chan-

nels at 60 km resolution, and for only the 0.8 cm channel at 30 km resolution. Data are
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CALL ICE SURFACE TEMPERATURE AND

ICE CONCENTRATION SUBROUTINES FOR I156 KM CELL

,,_ON._._/C__v_O DELETE ICE SUR-

FACE TEMPERATURE.
RECLASSIFY CELL

AS NO OPTION

_,NO

CALL ICE CONCENTRATION SUB;-

ROUTINE FOR 97.5 KM CELL

USING COMPUTED ICE SURFACE

TEMPERATURE ALSO AS INPUT

YES

TO

,O,NO
CALL ICE CONCENTRATION, MULTI-

YEAR ICE FRACTION, THIN FIRST

YEAR ICE FRACTION SUBROUTINES

FOR 60 KM CELL USING COMPUTED

ICE SURFACE TEMPERATURE ALSO

AS INPUT

YES

0

ORIGINAl/ PAGE IS

OF POOR QUALITY

Figure 8-9. SMMR Data Processing Flow Chart

228



CALL ICE CONCENTRATION SUB-

ROUTINE FOR _0 NH CELL USING
OTHER COHPUTED ICE PARA-

HETERS ALSO AS INPUTS

DELETE ALL ICE PARA-
HETERS EXCEPT ICE

CONCENTRATION

,1,

WRITE PARt,t SS

Figure 8-10. SMMR Data Processing Flow Chart

grouped by cells and bands of various sized, but each combination of cells and bands equals

780 km 2. Location coordinates are given for each cell and band.

• PARM LO (Parameters of Land-Ocean Tape)

• PARM SS (Parameters of Sea Ice and Snow and Ice on Land Tape)

• PARM 30 (Parameters of 37 GHz channel Tape)

Each tape type contains derived parameters for each IFOV as specified by the tape titles.

• MAP LO (Mapped Parameters of Land-Ocean Data Tape)

• MAP SS (Mapped Parameters of Sea Ice and Snow and Ice on Land Tape)

• MAP 30 (Mapped Parameters of 37 GHz channel Data Tape) ORIGINAl' PAGE IS

229 OF POOR QUALITY



YES

CALL RAIN RATE

SUBROUTINE FOR

_O KM AND 60 KM
CELLS

WRITE PARM LO

l
END 3

NO

_P

CALL SEA SURFACE
TEMPERATURE SUB--

ROUTINES FOR
156 KM CELL

1
!

CALL WIND SPEED SUB-"ROUTINEI

FOR 97.5 KM CELLS USING ICOMPUTED SEA SURFACE

TEMPERATURE ALSO AS INPUT

CALL ATMOSPHERIC LIQUID
WATER AND WATER VAPOR

SUBROUTINES FOR 60 KM

CELLS USING SEA SURFACE

TEMPERATURE AND WIND

SPEED ALSO AS INPUT

1,
WRITE PARM LO

AND PARM SS

Figure 8-11. SMMR Data Processing Flow Chart
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GPARM TAPE_'_

EN ERAT I ON.,/

READ PRODUCTION RUN

INFORMATION & INITIALIZE

ACCOUNTING INFORMATION

READ CELL & CELL 30 TAPE, &
NMC DATA

NO

NMC - NATURAL, METEOROLOGICAL CENTER,

SUITLAND, MARYLAND

OVER OCEAN

NO

YES NO

OVER SNOW

YES NO
CALL SNOW

SUBROUTINES OVER ICE

PARM SS

(

CALL LAND

SUBROUTINES

CALL )CE
WRITE

SHEET SUB-
PARM SS

ROUTINES

Figure 8-12. SMMR Data Processing Flow Chart
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Co.tain north and south polar map projections (SS and 30 tapes) and Mercator pro-

jections (LO tapes) of derived parameters in scientific word structure.

The form and content of each of these tapes is specified in a tape specification document for

each tape type. Users receiving one of these tapes will receive the appropriate document. See Sec-
tion 1.5 of this document for details.

8.6.3 Display Products

There are 16 different SMMR map display products. All displays are color annotated maps pre-

pared initially as 105 mm color negatives.

All displays contain either polar stereographic or Mercator map projections. Some displays
contain two northern hemisphere polar maps to 50°N and two southern hemisphere maps to 50°S.

Figure 8-14 is an example of this format. Some displays contain the same four polar maps but the
limits of the maps are 30°N and 30°S, as shown in Figure 8-15. On these map sets the left set of two

maps contains the data for the first half of the display period and the right set of two maps contains
the data the last half of the display period. Polar displays, containing the parameters averaged over

one month, only contain one northern and one southern hemisphere map, as shown in Figure 8-16

(50 ° map limits) and Figure 8-17 (30 ° map limits).

Some displays contain two Mercator maps as shown in Figure 8-18. The top map always con-

tains only descending node, or nighttime, data and the bottom map always contains only ascending,

or daytime, data. Latitude limits for these maps are 64°N to 64°S. Beneath the maps on all displays

is a 32-step color scale. The colors are used in each map to identify parameter values. The number

beneath each color chip provide the parameter values for that chip. (A color chip may have from one

to six parameter values, depending on the number and complexity of the parameter being displayed.)

Beneath the color scale numbers are the titles of the parameters mapped in the display. Table

8-4 lists the parameter titles for each SMMR color display and their corresponding film specification

number. As Table 8-4 indicates, there are from one to four parameters in each map, depending on

the display. When more than one parameter is on a map, the area occupied by each is mutually ex-

clusive. Several of the parameters are averaged and mapped at a short time interval and also at one

month time periods.

Interpreting the fourth digit from the left in each film specification number in Table 8-4 gives

the frequency of output of that display. The frequencies for SMMR are:

XXX3XX = produced every three days,

XXX4XX = produced every six days, and

XXX7XX = produced every month.

On each display the letter (A, B, etc.) before each parameter title is referenced to the same letter
at the beginning of one of the lines of color scale annotation.

There are three sets of map resolutions used in the SMMR display products (150 km, 50 km,

and 25 km). These resolutions correspond to the nominal IFOV's of the channels which are the prin-

cipal contributor to the physical parameter presented. The resolution for each parameter appears in

paretheses after the display title near the bottom.
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D
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D WIND SPEED OVER OPEN WATER (IOOKM RES.)

NINBUS 7 SMMR THREE DAY AVERAGES
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07 AUG 80 THRU 12 AUG 80 ORBITS 09859 THRU 099112
TXXXXX ALGO XXX F23130_, BCXXXXXX

Figure 8-14. Format for SMMR Short-term Polar Displays to 50°N and 50°S

Title and reference information are at the bottom of each display. On the last line on the three

and six day displays there is a "missing orbits per day" code followed by a series of two-digit numbers.

The first two-digit number is the number of orbits of data missing (for any of several reasons) from
the first day of data used to construct the display. The second two-digit number is for the second

day, etc.

The items on the right half of the last line are: the physical tape number the data is stored on

(TXXXXX), the algorithm reference number used in processing the data (ALGO XXX), the film spe-
cification number (F 231XXX), the project data format code (BA, BB, or BC), and the film frame
number (XXXXXX).

234



07 AUG 80 THRU 9 AUG 80 90E180

_N

90W 0

280

IIIIllllilllllll

90E

180 10 AUG 80 THRU 12 AUG 80 90E

)N

90W 0

90W ; 90E

I
180

I I IIIII II!111 III
206 207 208 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXXXXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 2_5 2_62_7
2_8 239 2zLOXXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 267 268269
270 271 272 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXXXXXXXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 299 _00_01
302 303 _0_ XXX XXX XXX XXX XXX XXX XXX XXX XXX XXXX XX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX _1 3_2 _

AVERAGE _7 GHz BRIGHTNESS TEMPERATURE (25KM RES.) SCALE ., K

NIHBUS 7 S14NR THREE DAY AVERAGES 07 AUG 80 THRU 12 AUG 80 ORBITS 09859 THRU 099_1.2

HISSING ORBITS PER DAY XX XX XX XX XX XX XX XX XX XX XX XX TXXXXX ALGOXXX F2_1_20 BAXXXXXX

Figure 8-15. Format for SMMR Short-term Polar Displays to 30°N and 30°S

8.6.4 Data Availability

The SMMR experimental data consisting of the magnetic tapes described in Section 8.6.2 and

the color film displays illustrated and described in Section 8.6.3 are archived at NSSDC. Initial instru-
ment checkout, algorithm adjustments, and general program debugging is expected to take from six

to twelve months, depending on the geophysical parameter. Users requesting SMMR data from the

NSSDC should read Section 1.5 of this document for general tape and film ordering information.

Future plans of NOAA-EDIS include archiving data from the first dedicated oceanographic satel-

lite, Seasat-A. A common archive of oceanographic data, including SMMR and CZCS products, is
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180

90W

01 AUG 80 THRU 31 AUG 80

90E

N

0

90W

_5OS

180

90E

llllllllllllllllIlllllllllllllll
A 178 179 180 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 207 20820 <j

210 211 212 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 239 2_.02u,1
2152 2_3 211"u,XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 271 272 27

B O 5 10 15 20 25 30 35 _0 _5 50

C 0 10 20 30 _O 50 60 70 80 90 100

A SURFACE TEMPERATURE FOR ICE SMEET$ |5OKM RES. J SCALE UNITS - K

S_IOW LAYER WATER EQUIVALENT FOR LARGE SNOW FIELDS {SOKM RES.) SCALE UNITS - cm

C SEA ICE CONCENTRATION {25KM RES.) SCALE UNITS - %

NIMBUS 7 SMMR ONE MONTH AVERAGE Ol AUG 80 THRU 31 AUG 80 ORBITS 09831 TMRU 10265
TXXXXX ALGO XXX F23170_ [_CXXXXXX

Figure 8-16. Format for SMMR One-month Polar Displays to 50°N and 50°S

under consideration. Beginning on September 1, 1978, and continuing through 1979, the World

Meteorological Organization will participate in the First GARP Global Experiment (FGGE). Selected

ERB and SMMR data acquired during this period are relevant to the Experiment and are desired for
inclusion in the archive. A special effort would be required to get these data to a FGGE data collec-

tion center within 45 days of acquisition. If the data are not available for the full period, particular

attention is being given to the special observing periods of January 15 to February 13, 1979 and May
10 to June 2, 1979.
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01 AUG 80 THRU 31 AUG 80

180 90E

90w

90W

0

180

90E

"17B'179 180 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 207 208 2091
210 211 212 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 239 240 2411
242 2_3 24.u,XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 271 272 2731
27u, 275 276 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 903 304 30,5 I

I

SEA ICE SURFACE TEMPERATURE. AVG. -SNOWSUBSURFACE TEMP. OVER ICE SHEETS, SCALE UNITS = K [
AND OVER LARGE SNOW FIELDS' - (150KM RES. J I

01 AUG 80 THRU 31 AUG 80 ORBITS 09831 THRU 10265 I

NIMBUS 7 SMMR ONE MONTH AVERAGE TXXXXX ALGO XXX F231702 BCXXXXXXI

8.7

idation investigations while two are applications.

experiment investigations is given below:

Figure 8-17. Format for SMMR One-month Polar Displays to 30°N and 30°S

Planned Net Experiment Investigations and Data Applications

There are twenty separately identifiable investigations planned for SMMR NET; eighteen are val-
A summary of planned SMMR pre and post launch

8.7.1

8.7.1.1

Validation Investigations

SMMR Underflights for Ocean/Atmosphere Parameters and New Sea Ice

oRIGINAL PAGE IS.
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110E 130E 120W _OW o 6DE 110E

60N

50N

_ON

30N

20N

LON

EQ

'10S

:20S

30S

_OS

50S

60S

6_S
TOP MAP - DESCENDING NODE (DN) BOTTOM MAP - ASCENDING NODE (AN)

6,P,N
60N

50N

gON

30N

20N

1ON

EQ

10S

20S

30S

_OS

50S

50S
i6_S

IIIll I1 IIIIIIIIIIlllllllll I
206 207 20S XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX.XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 236 23_
23B 239 2150 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX xxx XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 26B 269
270 271 272 XXX XXX XXX XXX XXXXXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 300 301
302 303 3Oil. XXX XXX XXX XXX XXX XNX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX 3.32 .3.3.3

SURFACE TEMPERATURE OVER WATER AND LAND (150KM RES) SCALE UNITS =. K

NIMBUS 7 SMMR SIX DAY PERIOD 01 AUG BO THRU 06 AUG BO ORBITS 09776 THRU 09B50

MISSING ORBIT DN XXXXXXXXXXXX AN XXXXXXXXXXXX T XXXXX ALGO XXX F231u, l.3 BBXXXXXX

Figure 8-18. Format for SMMR Mercator Displays

This investigation plans on 16 CV-990 underflights, principally in the northern latitudes but with

some flights in the Honolulu and Tahiti regions. The objectives of the investigation are to validate
retrieval algorithms, calibrate the SMMR and obtain data to determine retrievable continental ice

sheet parameters. Dr. Per Gloersen is the principal investigator.

8.7.1.2 Ocean/Atmospheric Parameter Validation Using Underflight and Coastal Radar Data

This investigation plans on using the data obtained from the underflights in the previous investi-

gation. Specific objectives of the investigation are:
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Table8--4
SMMRFilmProducts

Film
Spec

Number

231301

231302

231702
231303

231304

231704
231410

231710
231411

231711
231412

231712
231413
231713
231714
231320

FilmProductTitle

MAPS

SEAICE- MULTIYEARICEFRACTION
SNOWFIELDS- AVERAGESNOWSURFACETEMPERATURE
ICESHEETS- TEMPERATURE_ = 1.7CM
SEAICESURFACETEMPERATURE,
AVERAGESNOWSUBSURFACETEMP.OVERICESHEETSAND
LARGESNOWFIELDS
(sameas231302)
THIN FIRSTYEARICEFRACTION
ICESHEETS- TEMPERATUREFORX= 2.8CM
DRYSNOW
SURFACETEMPERATUREFORICESHEETS
SNOWLAYERWATEREQUIVALENTFORLARGESNOWFIELDS
SEAICECONCENTRATION
WINDSPEEDOVEROPENWATER
(sameas231304but no "WIND SPEEDOVEROPENWATER")
TOTAL ATMOSPHERICWATERVAPOROVEROCEANS
SOILMOISTURE
(sameas231410)
RAINFALL RATEOVEROCEANS

RAIN/NO RAINOVERLAND
(sameas231411)
TOTAL ATMOSPHERICLIQUIDWATEROVEROCEANS
OPENWATEROVERLAND
(sameas231412)
SURFACETEMPERATUREOVERWATERANDLAND
(sameas231413)
SEASURFACEWINDSPEED
AVERAGE37GHzBRIGHTNESSTEMPERATURE
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• Cross-calibrationof SMMRandairborneSMMR

• Seasurfacewindvalidation

• Seasurfacetemperaturevalidation

• Atmosphericwatervaporandnon-precipitationliquid watervalidation

• Rainfallratevalidation

Dr. Changisthe principalinvestigator.

8.7.1.3 Validationof SeaSurfaceTemperatureAlgorithmsUsingAXBTData

This investigationcomparesseasurfacetemperaturesobtainedfor AirborneExpendableBathy-
themographs(AXBT),with the SMMRsimulatorandwith the spacecraftSMMRinstrument,in areas
both freeandsuspectof radio frequencyinterference(RFI). Objectivesareto provideasecond-
stagevalidationof theseasurfacetemperatureandto resolvetheRFI issue.Dr. J.Muelleris the prin-
cipalinvestigator.

8.7.1.4 Validationof the NearSurfaceWindAlgorithmby Comparisonwith NOAABuoyand
ShipDataandCorrelationwith theRoss/CardoneSurfaceModel

This investigationcomparesdataobtainedfrom NOAAenvironmentalbuoys,researchvessels
andaircraftwith SMMRspacecraftdata. Anotherobjectiveis to compareSMMR-derivedNearSur-
faceWind(NSW)with modelpredictions.To achievethese,theNOAAP-3Caircraftflightswill be
synchronizedwith theCV-990expeditionin theGulf of Alaska.Thecomparisonof NSW'sfrom
SMMRandthe augmentedNSWtruth data set will be carded out as a NOAA/SAIL in-house effort.

The Ross/Cardone ocean surface model will be used to obtain the NSW's. Mr. Duncan Ross is the

principal investigator.

8.7.1.5 Atmospheric Frontal Zone Studies

This investigation provides additional validation of Atmospheric Liquid Water (L), Atmospheric

Water Vapor (W) and Rain Rate (R) retrieval algorithms. It is also hoped to identify new retrievable

parameters through case studies. Dr. David Staelin, as sole investigator, will analyze appropriate data
sets.

8.7.1.6 Validation of Sea Ice Parameter Retrieval Algorithms

This investigation seeks to demonstrate and/or improve accuracy for sea ice and related param-

eters. This includes the demonstration that the time rate--of-change cf C (C) can be correlated with

storm patterns. SMMR simulator and associated airborne support instrumentation data will be util-
ized to produce a sea ice parameter data set. During the investigation, the constants and, if necessary,
the functional form of the algorithm will be revised. Dr. William Campbell is the principal inves-

tigator.

8.7.1.7 SMMR Underflights for Old Sea Ice, Snow Fields, and Sea Surface Temperature

This investigation involves 12 CV-990 underflights in the phase I of the Spring Experimental

Program. Five flights are devoted to Sea Surface Temperature (SST), two flights are devoted to
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extensiveinstrumentedsnowfieldsin Scandinavia,twoflightsaredevotedto snowcoursesin North
America,andtheremainderhavemiscellaneousmissions.Theobjectiveof theseflightsis to obtain
datato achievethefollowing:

• ExtendtheSSTsurfacetruth databaseto increaseconfidencein theaccuracyof theSST
determinations

• Complete or obtain new data bases for snow fields and other parameters

• Check the calibration of the SMMR for any temporal variation

Dr. Per Gloersen is the principal investigator.

8.7.1.8 Soil Index Studies Based on Antecedent Rainfall

The purpose of this investigation is to correlate the 10 SMMR microwave brightness tempera-
tures with antecedent rainfall amounts as recorded in selected test areas. Suitable data will be

acquired at selected test sites for a 12 month period. Dr. Tom Schmugge is the principal investigator.

8.7.1.9 Analysis of Snow Flight Data

This investigation cross correlates airborne SMMR simulator, spacecraft SMMR and surface mea-

surement data. As part of the investigation, it provides post-launch algorithm constants and, if ne-

cessary, revises the functional form of the pre-launch snow property algorithm. Snow depth, density,

temperatures and other data will be acquired from selected sites in Scandinavia, Canada, Northern

USA, Switzerland, and Austria near the CV-990 underflights. These surface measurements will be
correlated with radiometric data from the airborne SMMR simulator and the Nimbus 7 SMMR. Dr.

Alfred Chang is the principal investigator.

8.7.1.10 SMMR Underflight Development of a Statistical Basis for the Sea Surface Temperature

and Sea Ice Algorithms

This investigation is phase 2 of the Spring Experiment Program (see 8.7.1.7). The objectives are
to obtain additional SST (under different observational conditions), obtain additional SMMR simula-

tor radiances over selected sea ice and snow field test sites, and finally to provide contingency SST

underflights. To achieve this, four flights are planned for SST observations in the Northern Pacific

Experiment (NORPAX), in the vicinity of Honolulu and Tahiti. Further, two flights are planned to

extend the sea ice and snow field data sets. Dr. Per Gloersen heads the team conducting the inves-
tigation.

8.7.1.1 1 Initial SMMR Ocean Algorithm Comparison with NOAA Surface Data

The objective of this investigation is to determine the error statistics for sea surface temperatures

and near-surface wind speeds by comparing these SMMR statistics with a limited available data set
obtained from routine NOAA surface data. Dr. Thomas Wilheit is the principal investigator.

8.7.1.12 Snowpack Properties - Correlation of Surface, Aircraft and Spacecraft Data

The objective is to follow the time variation of the snow field test sites studies with aircraft,

spacecraft and surface data. In addition, predictions of snow parameters of other large
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snow-coveredareas(e.g.,- Siberian)andcomparisonswill bemadewith publishedsurfacedata.Sur-
facetruth datasetsfrom foreignandNorthernU.S.A.test siteswill beextendedbeforeandafter the
scheduledCV-990underflightsfor comparisonwith theSMMRdata. Dr. AlfredChangis the princi-
palinvestigator.

8.7.1.13 Identificationof AdditionalObservablesfor SnowFields

Theobjectiveof thisstudyis to extendthemultispectralanalysisusedon the NEMS/SCAMS
datato the ten-channeldataobtainedby SMMR.Thesestudieswill usea morecomprehensive
SMMRdatasetin orderto establishthe significanceof theobservables:meanradiobrightnesstem-
perature(MTB)andbrightnesstemperaturegradient(GTB). Dr. DavidStaelinis theprincipalinves-
tigator.

8.7.1.14SnowAccumulationRates

Thisstudyextendstheanalysisof ESMR-5radiometricsignaturesof Greenland and Antarctica

to the SMMR data set. In addition, there will be a search for additional snow parameters retrievable

from SMMR radiances. The SMMR data will be interpreted on the basis of a volume scattering model

which compares snow grain size with snow accumulation rate. Dr. H. Jay Zwally is the principal
investigator.

8.7.1.15 SMMR Data as Orthogonal Functions - A Case Study

This study is intended to compress a SMMR data set for a particular geographic location in terms

of geographic orthogonal functions and in a fourier time sieves. A SMMR data subset will be analy-
zed for the purpose. Dr. James Mueller is the principal investigator.

8.7.1.16 Cryosphere Studies in Greenland

The objectives of this investigation are to support ongoing studies of sea ice dynamics and met-

eorology in the vicinity of Greenland and to maintain an interface with the European Space Agency
(ESA) scientists. The study will be accomplished by correlating SMMR data with information from

unmanned meteorological stations on the east coast of Greenland and ice buoys in North Greenland.

Also, SMMR data obtained over the Greenland ice sheet will be studied comparatively with field mea-
surements and data from airborne active microwave and radar sensors. Dr. Preban Gudmandsen is
the principal investigator.

8.7.1.17 Maritime Users of SMMR

It is intended, in this study, to generate a long-term data bank on oceans and shallow seas and

to provide SMMR data for Antarctic ice studies to be done by the Scott Polar Research Institute

(Cambridge, England). This is accomplished by the following approaches:

• A number of (alternate) algorithms will be generated and correlated with surface data

recorded by instrumented surface vessels, oil rigs and data buoys

• The Northern Hemisphere Computer Model, which the U.K. Meteorological Office uses to

provide ships with ocean current and sea surface temperatures contour maps will be checked.
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• Rainrates,oceansurfacetemperature,andwindspeedretrievalsobtainedfrom SMMRdata
will becomparedwith similarsurfacemeasurementdataobtaineddirectly.

• Datawill bestudiedbothon temporalandspatialscalesto assessthefeasibilityof foul
weatherwarningsystems.

Mr. PeterWindsoris theprincipalinvestigator.

8.7.1.18 SnowFieldProperties

Thisstudyis to determinesnowmicrowavesignaturesin therangeof 1to 100GHzandto corre-
latethesesignatureswith snowparameters.Usingprelaunchstudiesof SwissandAustriansnowfields,
comparisonwill bemadebetweenCV-990SMMRsimulatordataandsurfacemeasurementsof the
snowproperties.In thepostlaunchperiod,spacecraftSMMRdata,obtainedoverlargersnowfields,
will beanalyzed.Dr. KlausKunziis theprincipalinvestigator.

8.7.2 ApplicationsInvestigations

8.7.2.1 Orthogonalizationof OneYearof SMMRData

Theobjectiveof this investigationis to compresstheentkeSMMRu_t_.... _t in aL.,,,_scncs....
thogonalfunctions.The SMMRdatamaybecompressedoneor two ordersof magnitudeby this
techniqueandbemorereadilyincorporatedinto climate/dynamicsmodels.Dr. JamesMuellerheads
this investigation.

8.7.2.2 ComprehensiveCorrelationof SMMRSST'swith NOAA DataSets

Theobjectiveis to determine the systematic differences, if any, that exist between SST's obtain-

ed from NOAA satellites and ship reports and to determine the cause of such differences. This effort

is similar but much more comprehensive than that reported in 8.7.1.11. No principal investigator has
been named.
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SECTION 9

THE TEMPERATURE HUMIDITY INFRARED RADIOMETER (THIR) SUBSYSTEM

by

G. Thomas Cherrix

National Aeronautics and Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

9.1 Introduction

Except for being digitized on board the spacecraft, the Nimbus 7 THIR is of the same design

and operation as the THIR flown on Nimbus 4, 5, and 6. The two-channel scanning radiometer is

designed to measure earth radiation both day and night from two spectral bands. A 10.5 tam to
12.5 tam ( 11.5 tam) window channel provides an image of the cloud cover, and temperatures of the

cloud tops, land, and ocean surfaces. A 6.5 tam to 7.0 tam (6.7 tam) channel provides information
on the moisture and cirrus cloud content of the upper troposphere and stratosphere, and the loca-

tion of jet streams and frontal systems. The ground resolution at the subpoint is 6.7 km for the

11.5 tam channel and 20 km for the 6.7 tam channel.

9.2 Instrument Description

9.2.1 THIR Operation

The THIR consists of an optical scanner (shown in Figure 9-1) and an electronic module (not

shown). The optical scanner provides the necessary scan motion to produce cross-course scanning.

It contains the radiometer optics, detectors, preamplifiers, detector bias supply, scan drive, and scan

synchronization pulse generator (pip) amplifiers. The electronics module provides the necessary am-
plification and data processing of detected radiometric signal to achieve the proper levels and format-

ting compatible with the spacecraft's data processing system (DAPS). The electronics module also

contains the necessary switching to respond to the spacecraft commands to THIR, and the appropri-

ate housekeeping telemetry circuits. Table 9-1 gives the specifications of the THIR.

The scanner design uses an elliptically shaped plane scan mirror and primary optics, which are

common to both channels (Figure 9-2). The scan mirror, set at an angle of 45 degrees to the scan

axis, rotates at 48 rpm and scans in a plane perpendicular to the direction of the satellite motion. The

scan mirror rotation is such that, when combined with the velocity vector of the satellite, a right-

hand spiral results. Therefore, the field of view scans across the earth from east to west in the day-

time when traveling northward, and from west to east at night when traveling southward.

The radiation collected by the primary optics is separated into the two infrared bands by a di-

chroic filter which spectrally divides the energy into two channels. The 6.7 tam data are reflected off

the dichroic mirror, through field stops and relay lens, onto the immersed detector-bolometer flake.

The 11.5 tam data pass through the dichroic (transmission portion of the dichroic), an Itran-2 relay

lens (which also serves as a long-wavelength blocking filter), a folding mirror, and are focused onto
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Table 9-1

THIR Subsystem Specifications

Design Parameter Channel 1 Channel 2

Wavelength Band of Operation (Half Power Points
(microns))

Field-of-View (mrad)

Ground Resolution (Subsatellite Point at 955 Km)

6.5 to 7.0

20

10.5 to 12.5

(Km)

Collecting Aperture (cm 2)

Detector (Immersed Bolometer)
Size (mm)
Time Constant (msec)

Scan Rate (rps)

Dwell Time (msec)

Information Bandwidth (Hz)

20

110

0.67 x 0.67
2.7

0.8

4.2

115

6.7

110

0.22 x 0.22
1.8

0.8

1.4

345

Dynamic Range (Target Temperature) (°K) 0 to 270 0 to 330

Performance Characteristics Channel 1 Channel 2

Noise Equivalent Irradiance (NEI) (watts/cm 2)

Noise Equivalent Temperature
Differential (NETD) at Indicated
Scene Temperature

4.35 x 10-10

5.0°K @ i85°K

0.26°K @ 300°K

3.8:1 @ 185°K
110:1 @ 270°K

S/N Ratio at Indicated Scene Temperature

3.0 x 10 -10

OT71.5 tx 185°Kk_

0.28°K @ 300°K

19:1 @ 185°K
375:1 @ 330°K

Physical Characteristics Scanner Electronics Module

Weight (lbs)

Size (in.)

14.0

7.5 x 7.1 x 15.7

(Excluding sunshield)

6.0

7.0x6.8x6.0

Power Requirements Scanner Electronics

-24.5 vdc (watts) 1.8 5.8

100-Hz Two-Phase Square Wave 5.25 V (watts/phase) 0.1

Operating Temperature Range 0 ° to 45°C
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a germanium-immerseddetector-bolometerflake. The field stops at the image plane of each
channel define the field of view; 20 mr (1.15 degrees) for the 6.7 tam channel and 7 mr (0.40

degrees) for the 11.5 tam channel. The signals from the detectors are capacitor coupled to the

preamplifiers, amplified, and forwarded to the electronics module.

In the electronic module, the signals are further amplified and corrected for detector time

constant to provide overall frequency response as required by the subsystem optical resolution.

Even though the first stages of amplification are capacitor coupled, the low frequency cutoff
(0.5 Hz) of the data bandwidth is so low that a dc restore circuit is necessary to provide a zero

signal reference. This occurs during the portion of the scan when the optics are receiving zero

radiation (space). The dc restores circuitry also provides additional gain to raise the signal to

the desired output level, and filtering to establish proper frequency characteristics. The signals

are processed out of the electronics module through buffer amplifiers and into the Digital In-
formation Processor's (DIP) A/D converter.

The tabulated values of the relative spectral response for each channel are shown in Table

9-2, while Figure 9-3 illustrates these data graphically.

9.2.2 Scan Sequence

The radiometer scan mirror continuously rotates the field of view of the detector through

360 degrees in a plane normal to the spacecraft velocity vector. In sequence, the detector views

the in-fright blackbody calibration target (which is part of the radiometer housing), outer space,
earth, outer space, and returns again to view the radiometer housing. Figure 9-4 illustrates the

radiometer timing sequence relative to the angular position of the scan mirror for each scan

cycle. The radiometer Z-axis is oriented 5 degrees from the spacecraft zenith. This is done to

ensure that the radiometer dc restoration (prior to earth scan) and space check-of-calibration

(after earth scan) events will occur when the radiometer is viewing space. This way t he correct
radiometric data output voltage reference level and the space check-of-calibration of the radi-

ometer will be achieved without ambiguity.

At a scan mirror angle of 5 degrees (referenced to the spacecraft zenith) the radiometer

FOV is just starting to leave the scanner housing. At 48 degrees from spacecraft zenith scan

mirror position pip No. 1 is generated and the radiometer sync word and calibration sequence is

started. At 100 degrees (during the calibration sequence) the radiometer FOV starts to see space

fully. At 103.5 degrees the calibration sequence ends and the radiometer dc restores sequence

starts. At 110.7 degrees the dc restore sequence ends. The sequence of timing events, starting

with the sync word and ending with the radiometer dc restoration, is initiated by scan mirror

pip No. 1 and is timed by electronic logic circuits.

At 120.9 degrees (for a nominal 955 km altitude) the earth scan period begins. At 239.1

degrees the earth-scan period ends; the space check--of-calibration period begins. At 250 deg-
rees, the radiometer FOV just starts to see the scanner housing and the space check-of-calibra-

tion period ends.

At 302 degrees scan mirror position pip No. 2 is generated and the gain in the 6.7 tam
channel is reduced by a factor of 3. (This reduction permits this channel to have a 0°K to

270°K dynamic range and still be capable of being calibrated with a scanner housing reference

surface temperature as high as 323°K). At 345 degrees the radiometer FOV is completely filled

by the scanner housing and the second (scan housing) check-of-calibration period begins. At
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Table9-2
RelativeSpectralResponsefor the6.7/amand 11.5lam Channels

6.7/am Channel 11.5/am Channel

Wavelength Relative Wavelength Relative Wavelength Relative

(/am) Response (/am) Response (/am) Response

6.20

6.25

6.30

6.35

6.40

6.45

6.50

6.55

6.60

6.65

6.70

6.75

6.80

6.85

6.90

6.95

7.00

7.05

7.10

7.15

7.20

7.25

7.30

7.35

7.40

0.0000

0.0071

0.0141

0.1013

0.1884

0.5103

0.8322

0.9135

0.9948

0.9373

0.8799

0.9393

0.9987

0.9993

1.0000

0.9597

0.9195

0.7165

0.5135

0.2848

0.0562

0.0312

0.0061

0.0031

0.0000

9.9

10.0

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11.0

I1.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

12.0

12.1

12.2

12.3

0.0248

0.0295

0.0769

0.1996

0.4333

0.5871

0.7550

0.8355

0.8927

0.8580

0.8844

0.9224

0.9890

1.0000

0.9928

0.9575

0.9166

0.8888

0.9379

0.9426

0.8985

0.8657

0.8748

0.8288

0.7758

12.4

12.5

12.6

12.7

12.8

12.9

13.0

13.1

0.6546

0.5303

0.4257

0.2591

0.1071

0.0407

0.0147

0.0000
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Reference

Letter

Angle

(degrees)

Time

(ms)

H

LEGEND

Digital

Sample

(relative)

IlllllJlllJ.
I II

J K LH

Event

A 0 0 0

B 5 17.4 15

C 48 166.7 142

D 100 347.5 295

E 103.5 359.4 305

F 110.7 384.4 327

G 120.9 419.8 357

H 180 625.0 531

I 239.1 830,2 706

J 250 868.9 738

K 302 1048.5 891

L 345 1197.9 1018

M 355 1232.6 1 048

Spacecraft zenith

Radiometer I FOV just starting to leave housing

Scan mirror position pip No. 1 occurs and radi-

ometer sync word calibration signal sequence is

started. 6.7 pm channel gain returns to normal

Radiometer I FOV just starting to see all of space

Calibrate signal sequence ends and restore period starts

Restore period ends

Earth scan period begins (955 km orbit)

Spacecraft nadir

Earth scan period ends (955 km orbit)

Radiometer I FOV just starting to see housing

Scan mirror position pip No. 2 occurs and 6.7/am

gain is attenuated by a factor of 3

Radiometer IFOV completely filled by housing

Radiometer Z-axis

Figure 9--4. THIR Scan Angle Information
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355 degrees the scan mirror is parallel with the radiometer Z-axis and the gain of the 6.7 tam
channel is returned to normal.

9.2.3 Scan Geometry

For the 11.5 tam channel the scan rate of 48 rpm, combined with the satellite motion, pro-

duces nearly contiguous scan line coverage along the subpoint track. As the scan angle from nadir
increases there is increasing overlap between consecutive scan lines, reaching 350 percent overlap

at the horizon. There is an even greater increase in ground coverage along the scan line (perpen-
dicular to the line of motion of the satellite) as the angle from nadir increases.

Figure 9-5 shows the relationship between the scan sample and ground resolution for the

11.5 tam channel. Figure 9-5a shows this pictorially while Figure 9-5b is a drawing of the rela-
tionship. In Figure 9-5a the numbers under each element are nadir angle (in degrees), resolution

(in km) along the scan line, and resolution (in km) parallel to the satellite line of motion. At

nadir the IFOV of 7 mr (0.40 degrees) for the 11.5 tam channel provides a ground resolution of
6.7 km (3.7 nm). At a 50 degree nadir angle the ground resolution element is approximately

24 km long (east to west) by 15 km wide (north to south).

For the 6.7 tam channel the IFOV of 20 mr (1.15 degrees) at nadir provides a ground reso-

lution of 20 km (10.8 nm). At a 50 degree nadir angle the ground resolution element is approx-

imately 75 km long by 36 km wide.

9.2.4 THIR Data Flow

A simplified block diagram of the THIR/spacecraft data system is given in Figure 9-6. The

analog video signals from both THIR channels are input to an analog-to--digital converter which

is part of the digital information processor (DIP). The housekeeping data is input to the versa-
tile information processor (VIP) which multiplexes it with data from other sensors and inputs it

into DIP. The DIP passes the composite data stream to one of three Goddard Standard Tape

Recorders (GSTR) or to the 25 kbs channel of the dual S-Band transponder (for real-time trans-
mission only). When commanded to play back, the GSTR passes the data at a 32-to-1 increased

rate (800 kbs) to one of two S-Band transmitters on the high rate channel of the dual S-Band

Transponder which broadcasts it to earth.

Figure 9-7 shows the ground data flow in simplified form. The ground station receives the

S-Band data stream, demultiplexes it and routes it into the digital data processing system (DDPS)
where the THIR data is sent to the data capture processing computer (DCPC) of the Information

Processing Division (IPD). A digital tape of THIR data is output and delivered to the THIR

processing computer where the video signal (both channels) is blocked into single scan lines; the
earth view samples are stripped out and written on the stripped THIR tape (STI'). The data is

calibrated and located and written on the calibrated located data tape (CLDT). The scan lines

are then separated by channels and daytime or nighttime and merged into world montages on

high density tape (HDT). The HDT is input to the High Resolution Film Recorder (HRFR) where

the four daily world montage film products are generated.

The CLDT's and world montage film products are sent to the National Space Science Data

Center (NSSDC) for archival and distribution to the user community.
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Figure 9-6. Spacecraft/THIR Data Flow
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9.3 Calibration

9.3.1 Laboratory Calibration

The main parameters for calibration of all electromagnetic radiation detection devices are

essentially the same. Three fundamental quantities must be defined" the effective spectral re-

sponse, _b_; the effective radiance, N; and the equivalent blackbody temperature, T B. Here _bX
is a composite function involving all of the factors which contribute to the spectral response of

the instrument such as filter transmission, mirror reflectances, and the spectral responsivity of
the detector.

The effective radiance, N, is defined as

N = NX4_xdX (1)

where N;_ represents the generally non-Planckian radiation from the earth and its atmosphere.

Because of its narrow field of view, the THIR essentially measures beam radiation or radi-

ances toward the satellite along the optical axis. In the pre-flight laboratory calibration, the
FOV of the radiometer was filled by a blackbody target whose temperature could be varied and

accurately measured over a range of 150°K to 340°K. From the temperature of the blackbody

target, TB, the spectral radiance of the target is determined by the Planck function B_. The
integration of this function over the effective spectral response, _, yields that portion of the
radiance of the target to which the radiometer responds, the "effective radiance," N, given by

- ffN = Bx(Tx)_bxd x (2)

9.3.2 Equivalent Blackbody Temperature

The effective radiance to which the orbiting radiometer responds may be expressed by

- CN = NX_bxdx (3)

where N_, is the spectral radiance in the direction of the satellite from the earth and its atmo-

sphere. It is convenient to express the measurement from the orbit in terms of an equivalent

temperature of a blackbody tilling the field of view which would cause the same response from

the radiometer. From Equations 2 and 3 it is seen that this "equivalent blackbody temperature"

corresponds to the target temperature, TB, of the blackbody used in the laboratory calibration.

Therefore, the radiometer measurements can be expressed either as values of effective radiance ,

N, or as equivalent blackbody temperatures, TB. The N versus TB function from Equation 2 is
given in Table 9-3 for both channels.

9.4 : Data Formats and Availability

9.4.1 World Montage

The individual swaths of THIR data are electronically stored uatil a day (and, separately a
night) of data is assembled. Then the datais exposed on 241 mm (9.5 inch) film as a world mon-
tage as illustrated in Figure 9-8.
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NIMBUS 7

TEMPERATURE/HUMIDI TY INFRAREDRADIOl,ETER 11.5 MI CROMETERCHANNEL
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Figure 9-8. THIR Montage Film Display Format
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Eachdisplaycontainsappropriatetitle informationidentifyingthe satellite,the channelof
datadisplayed(11.5/am or 6.7/am), whether the montage contains daytime or nighttime data,

and the date the data was recorded. The 13 or 14 orbits of daytime or nighttime data are in
the center of each display. Beneath each daytime orbital swath is its data orbit number plus an

ascending node longitude and Greenwich Mean Time (GMT). Beneath each nighttime orbital

swath is its data orbit number plus a descending anode longitude and GMT. (See Figure 9-8.)

Beneath the data orbit reference information is a nine-step gray scale. The gray scale is
calibrated with the imagery and allows a user to estimate cloud, ocean and land temperatures

within each data swath. To the right of center at the bottom of each display is information

used mainly for cataloging the data. This information is the physical tape number the data is

stored on (TXXXXX), the algorithm reference number used in processing the data (ALGO

XXX), the film specification number (F342140), the project data format code (IP), and the
film frame number (XXXXXX).

There are four daily THIR montage displays. Each is displayed using the format described

in this section. The four displays are an 1 1.5/am or 6.7/am nighttime display, and an 11.5/am or
6.7/_m daytime display. :

9.4.2 Tape Data

Whenever observations are required at the full capability of the THIR, the data available on
magnetic tape should be utilized. The CLDT is generated at the same time as the data base used

for producing the world montage film products. The CLDT replaces the THIR-NMRTs produ-
ced for the Nimbus 4, 5 and 6 THIRs. However, the CLDT does not resemble the NMRT in

format. The CLDT has the following general characteristics:

• 9 track 1600 BPI

• Data expressed in 8, 16 and 32-bit word sizes

• Bi-spectral (both 6.7/am and 11.5/am data in the same records)

• Measurements expressed in radiance values (conversion table to temperature (K) includ-
ed in header record)

• One tape covers half a GMT day

• One file covers one data orbit

• GMT is given for the nadir sample of each sban

• Latitude and longitude values are given for each sixth data point

THIR CLDT's are generated for all THIR data collected and deemed to be of sastifactory
quality.

The 11.5/am channel THIR data are also formatted on tape to supply cloud cover statistics

for the ERB and the SBUV/TOMS experiments. These tape formats were designed specifically

for these experiments, but users might find other applications. The THIR clouds-ERB tapes
contain mean radiances and rms deviations of clouds at each of four altitude levels for each ERB
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subtargetarea. TheTHIR clouds-TOMStapescontainthe sameinformation for eachSBUV
and/orTOMSI r'OV. (Conversion from radiances to temperatures is available in the CLDT

documentation.)

9.4.3 Data Availability

The THIR data are available from the NSSDC as computer-produced daily world montage

film products and as computer compatible digital tapes. Users requesting THIR data should
read Section 1.5 of this document for general tape and film ordering information.

The world montage displays (described in Section 9.4.1) are available as 241 mm by 241

mm positive or negative black and white transparencies or as 241 mm black and white positive

prints.

When requesting THIR montages, a user should specify the display medium (film or print),
the channel desired (6.7/am or 11.5/am), the diurnal requirement (daytime, nighttime, or both),

and the user's start and stop dates for data.

The digital tapes (described in Section 9.4.2) are available on a 9-track 1600 bpi tape for-
mat. Furnished with each tape type is a tape specification document describing the record and

file content and word format of each tape type. Table 1-5 in Section 1.5 of this Guide pro-

vides tape specification numbers for the THIR tapes. Request these documents by tape specifi-

cation number and tape name (acronym).

f
J

J
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Table9-3
EffectiveRadiance(N)versusEquivalentBlackbodyTemperature(TB)

BlackbodyTemperature
(OK)

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

Effective Radiance (w/m 2 ster)

6.7/am Channel

0.0039

0.0094

0.0204

0.0407

0.0755

0.1317

0.2180

0.3446

0.5236

0.7685

1.094

1.516

11.5 /am Channel

0.2827

0.4758

0.7536

1.135

1.639

2.281

3.079

4.046

5.194

6.532

8.070

9.813

2.050

2.714

3.524

4.498

5.652

7.002

8.563

10.35

12.38

11.71

13.93

16.31

18.90

21.70

24.71

27.92

31.35

34.96

\
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AC

ACE

ACS

A/D

ADPE

A/E

AF

AFC

AGC

AGE

AGREE

ALGO

ANC

AOS

APL

ATC

ATDM

ATFE

ATHC

AVHRR

AXBT

BANAT

BAT

BCD

t_ ='_'_= _,_GE BLANK NOT FILMED

APPENDIX A

ABBREVIATIONS AND ACRONYMS

Attitude Control

Actuator Control Electronics

Attitude Control System

Analog to Digital

Automatic Data Processing Equipment

Absorptivity to Emmissivity

Audio Frequency

Automatic Frequency Control

Automatic Gain Control

Aerospace Ground Equipment

Advisory Group on Reliability Electronic Equipment

Algorithm

Automatic Nutation Control System

Acquisition of Satellite

Applied Physics Laboratory

Active Thermal Control

Asychronous Time Division Multiplexing

Advanced Thermal Control Flight Experiment

Active Thermal Control

Advanced Very High Resolution Radiometer

Airborne Expandable Bathythemographs

Beta-Aerosol Number Density Archive Tape

Beta Archive Tape (SAM II)

Binary Coded Decimal

A1



BCU

ber

BOT

bpi

BSA

BTC

BW

CAI

CAT

CBTT

CBW

CDA

CDHS

CDP

CDT

CDU

C.G.

Chan

cn4

CHRT

CIC

CITE

CJ

CL

CLB

Bench Checkout Unit

Bit Error Rate

Beginning of Tape

Bits per second

Bit Synchronization Acquisition

Binary Time Code

Bandwidth

Computer Assisted Instruction

Catalog Archive Tape, Cross-section Archive Tape

Calibrated Brightness Temperature Tapes

Constant Bandwidth

Command and Data Acquisition

Command and Data Handling System

Central Data Processor

Calibrated Data Tape

Computer Display Unit

Center of Gravity

Channel

Methane

Channel Reference Tone

Command Interface Control

Control Item Test Equipment

Clock Jitter

Clock

Control Logic Box

A2



CLC

CLDT

CLOUDS-E

CLOUDS--T

cm

CM

CMD

CMS

CNR

CO

CO 2

CO 2 N

CO2W

Coeff

CR

CRB

CRCST

CRT

CSS

CTC

CTEC

CTS

CW

C/WM -2

CZCS

Channel Level Control

Calibrated Location Data Tape

Cloud Cover Tape For ERB

Cloud Cover Tape for TOMS

centimeter

Command Memory

Command

Composite Multiplex Signal

Carrier to Noise Ratio

Carbon Monoxide

Carbon Dioxide

Narrow Carbon Dioxide Channel

Wide Carbon Dioxide Channel

Coefficient

Control Room

Change Review Board

Calibrated Radiance, Chlorophyll, Sediment and Temperature Tape

Cathode Ray Tube

Coarse Sun Sensor

Comprehensive Terminal C-Band

Communication Test Equipment Console

Comprehensive Terminal S-Band

Carrier Wave

Counts/Watt Meter "2

Coastal Zone Color Scanner

A3



D/A

DAC

DACU

DAPS

dB

DCA

DD

DDHS

DDP

DEC

DEMOD

DEMUX

DEOF

DET

DFVLR

DHE

DIP

DIR

DISC

DLO

DMA

DOC

DOMES

DP

DPS

DPT

Digital to Analog

Digital to Analog Converters

Data Acquisition and Control Unit

Data Processing System

Decibel

Detector Capsule Assembly

Digital Data

Digital Data Handling System

Digital Data Processor

Declination

Demodulator

Demultiplex

Double End of File

Detector

Radiative Transfer Computer Programs at Joint Research Center

(European CZCS related)

Data Handling Equipment

Digital Information Processor

Direction

Discriminator

Double Local Oscillator

Direct Memory Access

Digital Operational Controller

Deep Ocean Mining Experiment Stations

Digital Processor

Digital Processor System

Digital Picture Terminal
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DR&A

DRAG

DRSS

DSAS

DSS

DSU

DTC

DTL

DTS

EBR

ECH

ED

EIRP

ELM

EMC

EME

EMI

Enab

ENFLX

EOF

EOT

EQ

ERB

ERL

ERP

ESA

DataReductionandAnalysis

DragCoefficients- Dimensionless

Data Relay Satellite System

Digital Solar Aspect Sensor

Digital Sun sensor

Data Switching Unit

Digital Time Code

Diode-Transistor Logic

Data Transmission System

Electron Beam Recorder

Earth Coverage Horn

Experiment Data

Effective Isotropic Radiated Power

Electronic Module

Electromagnetic Compatibility

Environmental Measurements Experiment

Electromagnetic Interference

Enable

Energy Flux - (Watt)m 2)

End of File

End of Tape

Equator

Earth Radiation Budget

Environmental Research Laboratories

Effective Radiated Power

European Space Agency
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ESMR

ESSA

ETR

EURASEP

EUROMET

EVM

EXT

FC

FCHP

FD

FDM

FDX

FET

FEU

FGGE

FHA

FMECA

FNWC

FOB

FOV

FRT

FSK

FSS

FT

GAC

Electrically Scanning Microwave Radiometer

Environmental Science Services Administration

Eastern Test Range

European Association of Scientists for Environmental Protection

European Sub-NET (On CZCS)

Earth Viewing Module

Extinction

Frequency Carrier

Feedback-Controlled Heat Pipe

Frequency Diversity

Frequency Division Multiplex

Full Duplex

Field Effect Transistor

Frame Housing Electronics Unit

First GARP Global Experiment

Fra me Housing Assembly

Failure Mode Effects and Critical Analysis

Fleet Numerical Weather Control

Field Optical Bench

Field of View

Flight Readiness Test

Frequency Shift Keying

Fine Sun Sensor

Frequency Translation

Ground Attitude Control

A6



GARP

GEN

FWF

GHz

GIE

GISS

GMT

GND

GOES

GPE

GR&RR

GSE

GSFC

GSFT

GST

GSTR

GTB

HEATR

HDRSS

HDX

HEMI

HF

HIRS

HNO 3

HTRS

Global Atmospheric Research Program

Generator

Fleet Weather Facility

Gigahertz

Ground Instrument Equipment

Goddard Institute for Space Studies

Greenwich Mean Time

Ground

Geostationary Operational Environmental Satellite

Ground Processing Equipment

Goddard Range and Range Rate

Ground Support Equipment

Goddard Space Flight Center

Geographic Season Filter"

Ground System Test

Goddard Standard Tape Recorder

Brightness Temperature Gradient

Heating Rate - Degree K/sec

High Data Rate Storage System

Half Duplex

Hemisphere

High Frequency (3 to 30 MHz)

High Resolution Infrared Radiation Sounder

Nitric Acid

Heaters
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Hz

n2o

ICD

ID

IDB

IEU

IF

I/F

IFC

IFOV

IGS

ILT

IMU

Inhib

INT

I/O

IP

IPAT

IFC

IFCIV

IPD

IFF

IPS

ips

IR

Hertz (cycles per second)

Water vapor

Interface Control Document

Identification

Input Data Block

Interface Electronic Unit

Intermediate Frequency

Interface

Inflight Calibration Source

Instantaneous Field of View

Inertial Guidance System

Image Location Tape

Inertial Measurement Unit

Inhibit

Interferometer

Input/Output

Ionospheric Propagation

Inverted Profile Archive Tape

International Pysheliometric Comparison

International Pysheliometric Intercomparison IV

Information Processing Division

Image Processing Facility

International Pysheliometric Scale

inches per second

Infrared

A8



IRA

IRU

JASIN

JRC

K

kbs

kg

KHz

km

KPPS

LaRC

Landsat

LAT

LC

LCC

LCS

LDT

LEC

LEDS

LIDAR

LIMS

LMFC

LMFCD

LO

LOC

Inertial Reference Assembly

Inertial Reference Unit

Joint Air-Sea Interaction Experiment

Joint Research Center (of the European Community)

Kelvin

kilobits per second

kilogram

Kilohertz

kilometer

Thousand Pulses Per Second

Langley Research Center

Land Satellite (formerly ERTS)

Latitude

Launch Complex

Launch Control Center

Large Core Storage

LIMS Data Tape

Load Event Counter

light Emitting Diodes

light Detection and Ranging

Limb Infrared Monitor of the Stratosphere

Load Major Frame Counter

Load MFC (Major Frame Counter) Divider

Land Ocean

Launch Operations Center
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LOG

LOP

LOS

LRIR

LSB

LTE

L/V

LVDT

L.W.

LWSCB

MA

MAT

MATRIX

mb

MERC

MetOCC

MFC

MHz

MI

mm

MOD

mr

ms

MSB

MTB

Logarithm

Launch Operations Plan

Line of Sight, Loss of Signal

Limb Radiance Inversion Radiometer

Least Significant Bit

Local Thermodynamic Equilibrium

Launch Vehicle

Linear Variable Differential Transformer

Long Wave

Longwave Scanning Channel Blackbody

Multiple Access

Map Archival Tape

Mapped Data Matrix

Millibar

Mercator

Meteorological Operations Control Center

Major Frame Counter

Megahertz

Modulation Index

Millimeter

Modulator

Milliradians

Millisecond

Most Significant Bit

Mean Radio Brightness Temperature
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MUX

MV

NASA

NCAR

NDPF

NEI

NEMS

NESS

NET

NETD

NFOV

NIP

n.m.

nm

NMC

NMRT

NO

NO2

NOAA

NOPS

NORPAX

NOS

NP

NPR

NSSDC

Multiplex

Millivolt

NationalAeronauticsandSpaceAdministration

NationalCenterfor AtmosphericResearch

NASADataProcessingFacility

NoiseEquivalentIrradiance

NimbusE MicrowaveSpectrometer

NationalEnvironmentalSatelliteService

NimbusExperimentTeam(s),NoiseEquivalentTemperature

Noise-Equivalent Temperature Difference

Narrow Field of View

Normal Incidence Pysheliometer

Nautica I Mile

nanometer

National Meteorological Center

Nimbus Meteorological Radiation Tape

Nitric Oxide

Nitrogen Dioxide

National Oceanic and Atmospheric Administration

Nimbus Observation Processing System

Northern Pacific Experiment

National Ocean Survey

North PoIe

Noise Power Ratio

National Space Science Data Center

All



NSW

N20

O3

OC

OCC

OCS

OMP

ORTHP

OSC

OSR

PA

PACRAD

PAM

PAM-II

PARM

PC

PCA

PCL

PCM

PCM-DHE

PCU

PDFC

PFM

PIP

PLL

Near Surface Wind

Nitrous Oxide

Ozone

Orbit Control

Operations Control Center

Ocean Color Scanner (U-2 A/C version) (CZCS)

Optical Mechanical Package

Orthogonal Pressure Function - mb

Oscillator

Optical Solar Reflector

Power Amplifier

Primary Absolute Cavity Radiometer

Phase Amplitude Modulation

Preliminary Aerosol Monitor

Parameter Tape

Printed Circuit

Polar Cap Absorption

Program Control Logic

Pulse Code Modulation

PCM Telemetry Data Handling Equipment

Power Control Unit

Project Data Format Code

Pulse Frequency Modulation

Position Pulse

Phase Lock Loop

A12



PM

PMEL

PMMR

PMR

PMT

PN

PNT

POP

PPMV

pps

PRES

PROG

PRP

PRS

PRT

PRU

PS

PSD

psi

PSK

PSP

pt

R

'rads

RADTMO

PhaseModulated

PacificMarineEnvironmentalLaboratory(NOAA)

PassiveMultichannelMicrowaveRadiometer

PressureModulatedRadiometer

PhotomultiplierTube

PseudoNoise

Pointing

ProjectOperationalPlan

PartsperMillion by Volume

PulsesperSecond

Pressure

Program

PhotoReferencePickup

ParabolicReflectorSubsystem

PlatiniumResistanceThermometer

PowerRegulationUnit

PowerSupply

PowerSpectralDensity

PoundsPerSquareInch

Phase-ShiftKeying

ProgramSupportPlan

Point

Roll

Radians

RadiometricTransferComputerProgramat JRC
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RAT

RCMP

RCMT

RCPOP

RCV

RCV-ECH

RCVR

RDAT

REG

RF

RFI

RFSW

RGA

R-H

rms

RMU

ROT

rpm

RSM

RUT-S

RUT-T

RT

RVDT

SACC

Radiance Archive Tape

Regression Coefficients for Mean Precipitation - Dimensionless

Regression Coefficients for Mean Temperature - Degree K/meter

Regression Coefficients for Probability of Precipitation - Percent/
meter

Receive

Receive-Earth Coverage Horn

Receiver

Raw Data Archive Tape

Register

Radio Frequency

Radio Frequency Interference

RF Switch

Rate Gyro Assembly

Relative Humidity --Percent

Root Mean Square

Remote Multiplex Unit

Receive Only Terminal

Revolutions Per Minute

Reference Sensor Model (ERB-related)

Raw Units Tape - SBUV

Raw Units Tape - TOMS

Real "time

Rotary Variable Differential Transformer

Science and Applications Computer Center
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SAGE

SAMII

SAMS

SAMSO

SAS

SBUV/TOMS

s/c

SC

SCAMP

SCAMS

SCAR

SCAT

SCE

SCO

SCP

SCR

SCU

SEC

SECC

SEMS

SEU

SHF

SMAT

SMMR

SMR

Stratospheric Aerosol and Gas Experiment

Stratospheric and Aerosol Measurement II

Stratospheric and Mesospheric Sounder

Space and Missile Systems Organizaton

Solar Aspect Sensor

Solar Backscattered Ultraviolet/Total Ozone Mapping Spectrometer

Spacecraft

Signal Conditioner, Spacecraft Clock

Small Command Antenna Medium Power

Scanning Microwave Spectrometer

Scientific Committee on Antarctic Research

Summary Cross-Section Archival Tape

Spacecraft Command Encoder

Subcarrier Oscillator

Solid Cryogen Package

Surface Composition Radiometer

Signal Conditioning Unit

Seconds

Shortwave Earth Flux Channel Ratio

Space Environment Monitor System

Sensor Electronics Unit

Super High Frequency

St acked Map Archival Tape

Scanning Multichannel Microwave Radiometer

Switching Mode Regulator
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SNR

SPDT

SR

SSB

SST

STC

STDN

Sr

SYNC

SYNCOM

SYS

TACH

TAT

TGS

TH

THIR

TIROS

TLM

TM

TMP

UFO

UHF

UV

V/A

VAR

Signal-To-Noise Ratio

Single Pole Double Throw

Sunrise

Single Sideband

Sea Surface Temperature

System Test Console

Space Tracking and Data Network

Steradian

Synchronous

Synchronous Communication

System

Tachometer

Antenna Temperature Tape

Transportable Ground Station, Trigline Sulphate

Thermal

Temperature-Humidity Infrared Radiometer

Television and Infrared Observation Satellite

Telemetry

Telemetry, Temperature Monitor, and Time Mode

Atmospheric Temperature - degree K

User Formatted Output (Tape)

Ultra High Frequency

Ultraviolet

Vacuum to Air Ratio

Variable
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VCO

VCXO

VHF

VHR

VHRR

VHRRE

VIP

VLF

V/T

VTVM

W

WB

WBVCO

WD

WFOV

WM-2

WRR

XMTR

ZIP

o

A

//m

/As

%

k

Voltage Controlled Oscillator

Voltage Controlled Crystal Oscillator

Very High Frequency

Very High Resolution

Very High Resolution Radiometer

Very High Resolution Radiometer Experiment

Versatile Information Processor

Very Low Frequency

Vacuum Thermal Test

Vacuum Tube Voltmeter

Watts, West

Wideband

Wideband Voltage-Controlled Oscillator

Wideband Data

Wide Field of View

Watts per square meter

World Radiometfic Reference

Transmitter

Zonal Information Processor

Degrees

Delta, Change

Micrometers

Microseconds

Percent

Wavelength
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APPENDIXB

NIMBUSEXPERIMENTTEAM (NET) MEMBERS

B.1 CZCS NET

Dr. Warren Hovis (elected team leader)

NOAA/NESS Code S-32

Room 135, FOB-4

Washington, D. C. 20233

Dr. John Apel

Pacific Marine Environmental Laboratory
3711 15th Avenue NW

Seattle, Washington 98105

Mr. Dennis Clark

NOAA/NESS Environmental Science Group
Room 810-D, Code 533

World Weather Building
Washington, D. C. 20233

Dr. Sayed EI-Sayed

Texas A & M University

Department of Oceanography
College Station, Texas 77843

Dr. Howard Gordon

Department of Physics

University of Miami

Coral Gables, Florida 33124

Mr. Frank P. Anderson
CSIR

National Research Institute for Oceanography
P. O. Box 320

SteUenbosch 7600

South Africa

Bruno Sturm

Att: Delegation of the Commission of

European Communities
Suite 707

2100 M Street, N. W.

Washington, D. C. 20037
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Dr. RobertWringley
AMESResearchCenter
NationalAeronauticsandSpaceAdministration
MoffettField,California94035

Dr. CharlesYentsch
Directorof Research
BigelowLaboratory of Ocean Sciences
McKown Point

West Boothbay Harbor, Maine 04574

B.2 ERB NET

Dr. Herbert Jacobowitz (elected team leader)

NOAA/NESS ($313)
Room 701, World Weather Building

Washington, D. C. 20233

Dr. K. L. Coulson

Department of Land, Air and Water Resources

University of California

Davis, California 95616

Mr. John Hickey

The Eppley Laboratory Inc.
12 Sheffield Avenue

Newport, Rhode Island 02840

Dr. Frederick House

Department of Physics and Atmospheric Science
Drexel University
32nd and Chestnut Streets

Philadelphia, Pennsylvania 19104

Dr. Andrew P. Ingersoll

Division of Geological and Planetary Sciences, 170-25

California Institute of Technology
Pasadena, California 91125

Mr. Louis Smith

Mail Stop 324

NASA/Langley Research Center

Hampton, Virginia 23665

Dr. Larry Stowe

National and Atmospheric Administration

NESS, $32, FOB--4
Washington, D. C. 20233
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Dr. ThomasVonderHaar
DepartmentOfAtmosphericSciences
ColoradoStateUniversity
Fort Collins,Colorado80523

B.3 LIMSNET

Dr. JamesM. Russell,III (electedco-teamleader)
Mail Stop401A
NASA/LangleyResearchCenter
Hampton,Virginia 23665

Dr. JohnC.Gille(electedco-teamleader)
NationalCenterfor AtmosphericResearch
P.O.Box3000
Boulder,Colorado80303

Dr. RolandDrayson
ResearchActivitiesBldg.
Universityof Michigan
AnnArbor,Michigan48105

Dr. HerbertFischer
MeteorologischesInstitute
Theresienstr.,37
D-8000Munchen2
FederalRepublicof Germany

Dr. AndreGirard
Onera-92320
Chatillon,France

Dr. ConwayLeovy
Departmentof AtmosphericSciencesandGeophysics
Collegeof ArtsandSciences
Universityof Washington
Seattle,Washington98195

Dr.WalterG.Planet
PhysicsBranch,$321-B
SatelliteExperimentLaboratory

NOAA/NESS

Suitland, Maryland 20233

Dr. Ellis Remsberg
Lidar Applications Section

Mail Stop 401A
NASA/Langley Research Center

Hampton, Virginia 23665
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Dr.JohnHarries
NationalPhysical Laboratory
Middlesex Teddington TW11 OLW

United Kingdom

Dr. Fredrick House

Department of Physics and Atmospheric Sciences

Drexel University

32nd and Chestnut Street

Philadelphia, Pennsylvania 19104

B.4 SAM II NET

Dr. M. P. McCormick (elected team leader)

Mail Stop 475

NASA/Langley Research Center
Hampton, Virginia 23665

Dr. Gerald W. Grams

School of Geophysical Sciences

Georgia Tech

Atlanta, Georgia 30332

Dr. Benjamin M. Herman
Institute of Atmospheric Physics

University of Arizona

Tucson, Arizona 85721

Dr. Theodore J. Pepin

Department of Physics and Astronomy

University of Wyoming

Laramie, Wyoming 82071

Dr. Philip B. Russell

Research Physicist

Atmospheric Sciences
Stanford Research Institute

Menlo Park, California 94025

B.5 SAMS NET

Dr. John Houghton (team leader)

Department of Atmospheric Physics
University of Oxford

Clarendon Laboratory
Parks Road

Oxford, OX1 3PU United Kingdom

B--4



Dr. M.Ackerman
Institut D'AeronomieSpatialdeBelgique
3 AvenueCircularie
B- 1180Bruxelles.
Belgium

Dr. J.E.Harries
NationalPhysicalLaboratory
Teddington
MiddlesexTWl 10LW
United Kingdom

Dr. K. H. Stewart

Meteorological Office
London Road

Bracknell, Berks.

United Kingdom RG12 2SZ

Mr. H. Yates

NESS/NOAA, U. S. Department of Commerce

Federal Office Building 4
Suitland, Maryland 20233

B.6 SBUV/TOMS NET

Dr. D. Heath (team leader)
Code 912 J

Goddard Space Flight Center
Greenbelt, Maryland 20771

Dr. Arthur Belmont

Research Division HQM 251
Control Data Corporation
P. O. Box 1249

Minneapolis, Minnesota 55440

Dr. Derek Cunnold

Research Associate, 54-1517

Department of Meteorology

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Dr. Alex Green

ICASS

221 Space Sciences Research Building
University of Florida

Gainsville, Florida 32611
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Dr.WilliamImhof
SpaceScienceLaboratory
Department52-12,Building205
Lockheed Palo Alto Research Laboratory

3251 Hanover Streot

Palo Alto, California 94394

Mr. A. Krueger
Code 912

Goddard Space Flight Center

Greenbelt, Maryland 20771

Dr. Carlton Mateer

Atmospheric Environment Service
4905 Dufferin Street

Downsview, Ontario M3 H 5T4
Canada

Mr. Alvin J. Miller

World Weather Building
NOAA/NESS

Washington, D.C. 20233

B.7 SMMR NET

Dr. P. Gloersen (elected team leader)
Code 913

Goddard Space Flight Cenetr

Greenbelt, Maryland 20771

Mr. Frank Barath

Mail Station 183-701

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, California 91103

Dr. William Campbell

Ice Dynamics Project, USGS
I 13 Thomas Hall

University of Puget Sound

Tacoma, Washington 98416

Dr. Preben Gudmandsen

Electromagnetics Institute

348 Technical University of Denmark
KD-2800 Lyngby
Denmark
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Dr. K. F. Kunzi
Instituteof Applied Physics
Sidlerstrasse 5

3012 Berne

Switzerland

Dr. Rene O. Ramseier

Deputy Manager-Applications
SSPO, Room 1195

520 Preston Street, K1A OY7

Ottawa, Ontario
Canada

Mr. Duncan Ross

NOAA/SAIL

15 Rickenbacher Causeway

Miami, Florida 33149

Dr. David Staelin

Research Laboratory of Electronics

Massachusetts Institute of Technology
77 Massachusetts Avenue

Cambridge, Massachusetts 02139

Dr. T. Wilheit

Code 953

Goddard Spcae Flight Center

Greenbelt, Maryland 20771

Dr. E. P. L. Windsor

British Aircraft Corporation Limited

Guided Weapons Division, Electronics and Space Systems Group
Filton House

Bristol, United Kingdom
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